Yuwei Tan, Yang Zhu, René H Wijffels, Hongxia Zhang, William T Scott, Yan Xu, Vitor Martins Dos Santos
{"title":"控制食物微生物群代谢稳定性对稳定本土白酒发酵的影响。","authors":"Yuwei Tan, Yang Zhu, René H Wijffels, Hongxia Zhang, William T Scott, Yan Xu, Vitor Martins Dos Santos","doi":"10.1038/s41522-025-00729-3","DOIUrl":null,"url":null,"abstract":"<p><p>Steering microbial metabolic stability in fermentation is a recurrent goal in microbial food production. Indigenous liquor fermentation typically relies on complex microbiome metabolism, making it difficult to steer fermentation towards consistent high-quality products. Here, we conducted a three-step experiment to identify instability factors and explore ways to steer fermentation stability in lab-scale settings. We found that the metabolic stability of the microbiome fluctuates due to fermentation parameters, dynamic benefit allocation between yeasts and Lactobacilli, and metabolic network redundancy. In addition to parameters control, short-term metabolic stability requires stable microbial benefit allocation, whereas long-term stability requires proper functional redundancy. Rationally setting initial parameters and the microbial inoculation ratio is a practical way to optimize metabolic stability for stable indigenous liquor fermentation. Our study provides new insights into microbiome metabolism control and shows the feasibility of enhancing fermentation stability through appropriate initial conditions, enabling more controlled and efficient microbial food production systems.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"124"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214495/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controlling metabolic stability of food microbiome for stable indigenous liquor fermentation.\",\"authors\":\"Yuwei Tan, Yang Zhu, René H Wijffels, Hongxia Zhang, William T Scott, Yan Xu, Vitor Martins Dos Santos\",\"doi\":\"10.1038/s41522-025-00729-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steering microbial metabolic stability in fermentation is a recurrent goal in microbial food production. Indigenous liquor fermentation typically relies on complex microbiome metabolism, making it difficult to steer fermentation towards consistent high-quality products. Here, we conducted a three-step experiment to identify instability factors and explore ways to steer fermentation stability in lab-scale settings. We found that the metabolic stability of the microbiome fluctuates due to fermentation parameters, dynamic benefit allocation between yeasts and Lactobacilli, and metabolic network redundancy. In addition to parameters control, short-term metabolic stability requires stable microbial benefit allocation, whereas long-term stability requires proper functional redundancy. Rationally setting initial parameters and the microbial inoculation ratio is a practical way to optimize metabolic stability for stable indigenous liquor fermentation. Our study provides new insights into microbiome metabolism control and shows the feasibility of enhancing fermentation stability through appropriate initial conditions, enabling more controlled and efficient microbial food production systems.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"124\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00729-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00729-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Controlling metabolic stability of food microbiome for stable indigenous liquor fermentation.
Steering microbial metabolic stability in fermentation is a recurrent goal in microbial food production. Indigenous liquor fermentation typically relies on complex microbiome metabolism, making it difficult to steer fermentation towards consistent high-quality products. Here, we conducted a three-step experiment to identify instability factors and explore ways to steer fermentation stability in lab-scale settings. We found that the metabolic stability of the microbiome fluctuates due to fermentation parameters, dynamic benefit allocation between yeasts and Lactobacilli, and metabolic network redundancy. In addition to parameters control, short-term metabolic stability requires stable microbial benefit allocation, whereas long-term stability requires proper functional redundancy. Rationally setting initial parameters and the microbial inoculation ratio is a practical way to optimize metabolic stability for stable indigenous liquor fermentation. Our study provides new insights into microbiome metabolism control and shows the feasibility of enhancing fermentation stability through appropriate initial conditions, enabling more controlled and efficient microbial food production systems.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.