Anton Vaks, Andrew Mason, Sebastian F M Breitenbach, Alena Giesche, Alexander Osinzev, Irina Adrian, Aleksandr Kononov, Stuart Umbo, Franziska A Lechleitner, Marcelo Rosensaft, Gideon M Henderson
{"title":"北极洞穴揭示了中新世晚期几乎没有永久冻土的北半球。","authors":"Anton Vaks, Andrew Mason, Sebastian F M Breitenbach, Alena Giesche, Alexander Osinzev, Irina Adrian, Aleksandr Kononov, Stuart Umbo, Franziska A Lechleitner, Marcelo Rosensaft, Gideon M Henderson","doi":"10.1038/s41467-025-60381-5","DOIUrl":null,"url":null,"abstract":"<p><p>Arctic warming is happening at nearly four times the global average rate. Long-term trends of permafrost dynamics cannot be estimated directly from monitoring of present-day thaw processes, requiring paleoclimate-proxy information. Here we use cave carbonates (speleothems) from a northern Siberian cave to determine when the Northern Hemisphere was mostly permafrost-free. At present, thick continuous permafrost in this region prevents speleothem growth. In a series of partially eroded caves, speleothems grew during the late Tortonian stage (8.68 ± 0.09 Ma), a time when the geographic position of this site was already similar to today. Paleotemperatures reconstructed from speleothems show that mean annual air temperatures (MAAT) in the region were + 6.6°C to + 11.1°C, when contemporary global MAAT were ~ 4.5 °C higher than modern. Our findings provide direct evidence that warming to Tortonian-like temperatures would leave most of the Northern Hemisphere permafrost-free. This may release up to ~ 130 petagrams of carbon, enhancing further warming.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5483"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arctic speleothems reveal nearly permafrost-free Northern Hemisphere in the late Miocene.\",\"authors\":\"Anton Vaks, Andrew Mason, Sebastian F M Breitenbach, Alena Giesche, Alexander Osinzev, Irina Adrian, Aleksandr Kononov, Stuart Umbo, Franziska A Lechleitner, Marcelo Rosensaft, Gideon M Henderson\",\"doi\":\"10.1038/s41467-025-60381-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arctic warming is happening at nearly four times the global average rate. Long-term trends of permafrost dynamics cannot be estimated directly from monitoring of present-day thaw processes, requiring paleoclimate-proxy information. Here we use cave carbonates (speleothems) from a northern Siberian cave to determine when the Northern Hemisphere was mostly permafrost-free. At present, thick continuous permafrost in this region prevents speleothem growth. In a series of partially eroded caves, speleothems grew during the late Tortonian stage (8.68 ± 0.09 Ma), a time when the geographic position of this site was already similar to today. Paleotemperatures reconstructed from speleothems show that mean annual air temperatures (MAAT) in the region were + 6.6°C to + 11.1°C, when contemporary global MAAT were ~ 4.5 °C higher than modern. Our findings provide direct evidence that warming to Tortonian-like temperatures would leave most of the Northern Hemisphere permafrost-free. This may release up to ~ 130 petagrams of carbon, enhancing further warming.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"5483\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60381-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60381-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Arctic speleothems reveal nearly permafrost-free Northern Hemisphere in the late Miocene.
Arctic warming is happening at nearly four times the global average rate. Long-term trends of permafrost dynamics cannot be estimated directly from monitoring of present-day thaw processes, requiring paleoclimate-proxy information. Here we use cave carbonates (speleothems) from a northern Siberian cave to determine when the Northern Hemisphere was mostly permafrost-free. At present, thick continuous permafrost in this region prevents speleothem growth. In a series of partially eroded caves, speleothems grew during the late Tortonian stage (8.68 ± 0.09 Ma), a time when the geographic position of this site was already similar to today. Paleotemperatures reconstructed from speleothems show that mean annual air temperatures (MAAT) in the region were + 6.6°C to + 11.1°C, when contemporary global MAAT were ~ 4.5 °C higher than modern. Our findings provide direct evidence that warming to Tortonian-like temperatures would leave most of the Northern Hemisphere permafrost-free. This may release up to ~ 130 petagrams of carbon, enhancing further warming.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.