一种新型的四面体框架核酸抗生素递送系统:克服生物膜障碍对抗慢性感染。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yue Hu, Zhou Chen, Xinggang Mao, Di Qu, Dongsheng Zhai, Na Li, Shan Zhou, Xiaoyan Xue, Mingkai Li
{"title":"一种新型的四面体框架核酸抗生素递送系统:克服生物膜障碍对抗慢性感染。","authors":"Yue Hu, Zhou Chen, Xinggang Mao, Di Qu, Dongsheng Zhai, Na Li, Shan Zhou, Xiaoyan Xue, Mingkai Li","doi":"10.1186/s12951-025-03553-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Overcoming bacterial biofilm barriers to enhance the efficacy of antibiotics remains a major therapeutic challenge, necessitating the development of efficient and biocompatible drug delivery systems. While framework nucleic acids (FNAs) have emerged as promising candidates for overcoming biological barriers, their biofilm penetration efficiency and mechanistic interactions require systematic exploration. This study evaluates the biofilm-penetrating capacity of FNAs with distinct topological configurations (linear, triangular, and tetrahedral), investigates their antibiotic delivery performance in biofilm-infected models, and elucidates the structure-dependent interactions between FNAs and bacteria.</p><p><strong>Results: </strong>DNA tetrahedron (Td) demonstrated superior biofilm penetration, exhibiting 44-fold and 11-fold stronger fluorescence intensity at a biofilm depth of 20 μm compared to linear and triangular counterparts, respectively, while maintaining structural stability. The optimized polymyxin B-loaded Td (PMB@Td, with a PMB: Td ratio of 10:1) enhanced biofilm permeability by 6-fold relative to free PMB. PMB@Td outperformed conventional liposome-encapsulated PMB (PMB@Lipo), achieving half-maximal biofilm eradication concentrations (MBEC<sub>50</sub>) of 12.8 µM versus 16.3 µM for PMB@Lipo. In murine models of biofilm- associated skin and pulmonary infections, PMB@Td effectively controlled bacterial burden and mitigated inflammatory responses without observable toxicity. Mechanistic studies revealed that the tetrahedral topology facilitated efficient diffusion within the biofilm matrix and enhanced Td adhesion to bacterial membranes.</p><p><strong>Conclusions: </strong>This work establishes Td as a robust nanoplatform for overcoming biofilm-mediated antibiotic resistance. The topology-dependent interactions provide critical design principles for engineering next-generation nanocarriers against biofilm-associated chronic infections, with significant translational potential in antibiofilm therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"465"},"PeriodicalIF":12.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211533/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel tetrahedral framework nucleic acid-based antibiotic delivery system: overcoming biofilm barriers to combat chronic infections.\",\"authors\":\"Yue Hu, Zhou Chen, Xinggang Mao, Di Qu, Dongsheng Zhai, Na Li, Shan Zhou, Xiaoyan Xue, Mingkai Li\",\"doi\":\"10.1186/s12951-025-03553-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Overcoming bacterial biofilm barriers to enhance the efficacy of antibiotics remains a major therapeutic challenge, necessitating the development of efficient and biocompatible drug delivery systems. While framework nucleic acids (FNAs) have emerged as promising candidates for overcoming biological barriers, their biofilm penetration efficiency and mechanistic interactions require systematic exploration. This study evaluates the biofilm-penetrating capacity of FNAs with distinct topological configurations (linear, triangular, and tetrahedral), investigates their antibiotic delivery performance in biofilm-infected models, and elucidates the structure-dependent interactions between FNAs and bacteria.</p><p><strong>Results: </strong>DNA tetrahedron (Td) demonstrated superior biofilm penetration, exhibiting 44-fold and 11-fold stronger fluorescence intensity at a biofilm depth of 20 μm compared to linear and triangular counterparts, respectively, while maintaining structural stability. The optimized polymyxin B-loaded Td (PMB@Td, with a PMB: Td ratio of 10:1) enhanced biofilm permeability by 6-fold relative to free PMB. PMB@Td outperformed conventional liposome-encapsulated PMB (PMB@Lipo), achieving half-maximal biofilm eradication concentrations (MBEC<sub>50</sub>) of 12.8 µM versus 16.3 µM for PMB@Lipo. In murine models of biofilm- associated skin and pulmonary infections, PMB@Td effectively controlled bacterial burden and mitigated inflammatory responses without observable toxicity. Mechanistic studies revealed that the tetrahedral topology facilitated efficient diffusion within the biofilm matrix and enhanced Td adhesion to bacterial membranes.</p><p><strong>Conclusions: </strong>This work establishes Td as a robust nanoplatform for overcoming biofilm-mediated antibiotic resistance. The topology-dependent interactions provide critical design principles for engineering next-generation nanocarriers against biofilm-associated chronic infections, with significant translational potential in antibiofilm therapy.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"465\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03553-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03553-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:克服细菌生物膜屏障以提高抗生素的疗效仍然是一个主要的治疗挑战,需要开发高效和生物相容性的给药系统。虽然框架核酸(FNAs)已经成为克服生物屏障的有希望的候选者,但它们的生物膜渗透效率和机制相互作用需要系统的探索。本研究评估了具有不同拓扑结构(线性、三角形和四面体)的FNAs穿透生物膜的能力,研究了它们在生物膜感染模型中的抗生素递送性能,并阐明了FNAs与细菌之间的结构依赖性相互作用。结果:DNA四面体(Td)具有较好的生物膜穿透性,在生物膜深度为20 μm时,其荧光强度分别比线性体和三角形体强44倍和11倍,同时保持了结构稳定性。优化后的多粘菌素b负载Td (PMB@Td, PMB: Td比为10:1)相对于游离PMB,生物膜通透性提高了6倍。PMB@Td优于传统脂质体封装的PMB (PMB@Lipo),实现了12.8µM的半最大生物膜根除浓度(MBEC50),而PMB@Lipo为16.3µM。在生物膜相关皮肤和肺部感染的小鼠模型中,PMB@Td有效地控制了细菌负荷,减轻了炎症反应,而没有明显的毒性。机制研究表明,四面体拓扑结构促进了生物膜基质内的有效扩散,增强了Td与细菌膜的粘附。结论:本工作建立了Td作为克服生物膜介导的抗生素耐药性的强大纳米平台。拓扑依赖的相互作用为工程下一代纳米载体抗生物膜相关慢性感染提供了关键的设计原则,在抗生物膜治疗中具有重要的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel tetrahedral framework nucleic acid-based antibiotic delivery system: overcoming biofilm barriers to combat chronic infections.

Background: Overcoming bacterial biofilm barriers to enhance the efficacy of antibiotics remains a major therapeutic challenge, necessitating the development of efficient and biocompatible drug delivery systems. While framework nucleic acids (FNAs) have emerged as promising candidates for overcoming biological barriers, their biofilm penetration efficiency and mechanistic interactions require systematic exploration. This study evaluates the biofilm-penetrating capacity of FNAs with distinct topological configurations (linear, triangular, and tetrahedral), investigates their antibiotic delivery performance in biofilm-infected models, and elucidates the structure-dependent interactions between FNAs and bacteria.

Results: DNA tetrahedron (Td) demonstrated superior biofilm penetration, exhibiting 44-fold and 11-fold stronger fluorescence intensity at a biofilm depth of 20 μm compared to linear and triangular counterparts, respectively, while maintaining structural stability. The optimized polymyxin B-loaded Td (PMB@Td, with a PMB: Td ratio of 10:1) enhanced biofilm permeability by 6-fold relative to free PMB. PMB@Td outperformed conventional liposome-encapsulated PMB (PMB@Lipo), achieving half-maximal biofilm eradication concentrations (MBEC50) of 12.8 µM versus 16.3 µM for PMB@Lipo. In murine models of biofilm- associated skin and pulmonary infections, PMB@Td effectively controlled bacterial burden and mitigated inflammatory responses without observable toxicity. Mechanistic studies revealed that the tetrahedral topology facilitated efficient diffusion within the biofilm matrix and enhanced Td adhesion to bacterial membranes.

Conclusions: This work establishes Td as a robust nanoplatform for overcoming biofilm-mediated antibiotic resistance. The topology-dependent interactions provide critical design principles for engineering next-generation nanocarriers against biofilm-associated chronic infections, with significant translational potential in antibiofilm therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信