{"title":"天然小分子智能水凝胶抑制炎症中的Hsp90/NF-κB信号轴,达到持续解热的效果。","authors":"Yuqin Yang, Jingyi Jiao, Xiaohui Jia, Lei Li, Meiling Wu, Xinyue Lu, Yangyang Sun, Yingqi Lang, Fuhao Chu, Dong Bai, Penglong Wang, Haimin Lei","doi":"10.1186/s12951-025-03517-5","DOIUrl":null,"url":null,"abstract":"<p><p>In general, pseudoephedrine (PE) is a safe and universally employed in cold medicine, which displays powerful effect on antipyretic. Nonetheless, the sustained drug delivery system can effectively put an end to the above problems attributable to the drawbacks of low bioavailability and short intervals of administration. \"Complexation\" hydrogels are capturing enormous attention in a diverse array of fields in that there is no necessity to carry out external intervention for drug delivery. Nevertheless, it is prevalently acknowledged that macromolecular \"complexation\" hydrogels, biotin/avidin, antibodies/antigens, heterodimers, conA/glucose and cyclodextrin (CD) inclusion complexes, have several limitations of conventional drug delivery systems, such as unfavorable biological safety, undesirable intestinal wall penetrating, and extremely limited biodegradability, etc. For this reason, it is tremendously imperative to develop a natural small \"complexation\" hydrogel. In this context, we innovated a direct self-assembly \"complexation\" hydrogel (PE-GA). The PE-GA hydrogel was prepared by the incorporation of PE and glycyrrhizic acid (GA) into an aqueous dispersion without the aid of other carriers, which demonstrated dual-responsiveness including heating-cooling as well as pH. It is mainly governed by hydrogen bonds and electrostatic interactions. For cell bioavailability, there were substantial discrepancies between the PE-GA hydrogel and free PE at 72 and 84 h. For pharmacokinetic properties, there was also conspicuous discrepancy in Area Under the Curve (AUC) values between them. In subsequent antipyretic assay, PE-GA hydrogel displayed a conspicuous antipyretic effect in fever rats induced by LPS. The non-invasive fluorescence imaging was utilized to monitor the intestinal retention of the PE-GA hydrogel in mice, its unique aggregation/assembly induced retention (AIR) effect reinforced bioactive molecule retention, which may be another manifestation of enhancing antipyretic effect. Aside from that, PE-GA hydrogel played an antipyretic role by Hsp90/NF-κB pathway. The current research revealed potential antipyretic effect of PE-GA hydrogel which could be the therapeutic option against fever.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"478"},"PeriodicalIF":10.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural small molecule smart hydrogels inhibited the Hsp90/NF-κB signaling axis in inflammation to achieve sustained antipyretic effect.\",\"authors\":\"Yuqin Yang, Jingyi Jiao, Xiaohui Jia, Lei Li, Meiling Wu, Xinyue Lu, Yangyang Sun, Yingqi Lang, Fuhao Chu, Dong Bai, Penglong Wang, Haimin Lei\",\"doi\":\"10.1186/s12951-025-03517-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In general, pseudoephedrine (PE) is a safe and universally employed in cold medicine, which displays powerful effect on antipyretic. Nonetheless, the sustained drug delivery system can effectively put an end to the above problems attributable to the drawbacks of low bioavailability and short intervals of administration. \\\"Complexation\\\" hydrogels are capturing enormous attention in a diverse array of fields in that there is no necessity to carry out external intervention for drug delivery. Nevertheless, it is prevalently acknowledged that macromolecular \\\"complexation\\\" hydrogels, biotin/avidin, antibodies/antigens, heterodimers, conA/glucose and cyclodextrin (CD) inclusion complexes, have several limitations of conventional drug delivery systems, such as unfavorable biological safety, undesirable intestinal wall penetrating, and extremely limited biodegradability, etc. For this reason, it is tremendously imperative to develop a natural small \\\"complexation\\\" hydrogel. In this context, we innovated a direct self-assembly \\\"complexation\\\" hydrogel (PE-GA). The PE-GA hydrogel was prepared by the incorporation of PE and glycyrrhizic acid (GA) into an aqueous dispersion without the aid of other carriers, which demonstrated dual-responsiveness including heating-cooling as well as pH. It is mainly governed by hydrogen bonds and electrostatic interactions. For cell bioavailability, there were substantial discrepancies between the PE-GA hydrogel and free PE at 72 and 84 h. For pharmacokinetic properties, there was also conspicuous discrepancy in Area Under the Curve (AUC) values between them. In subsequent antipyretic assay, PE-GA hydrogel displayed a conspicuous antipyretic effect in fever rats induced by LPS. The non-invasive fluorescence imaging was utilized to monitor the intestinal retention of the PE-GA hydrogel in mice, its unique aggregation/assembly induced retention (AIR) effect reinforced bioactive molecule retention, which may be another manifestation of enhancing antipyretic effect. Aside from that, PE-GA hydrogel played an antipyretic role by Hsp90/NF-κB pathway. The current research revealed potential antipyretic effect of PE-GA hydrogel which could be the therapeutic option against fever.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"478\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03517-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03517-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Natural small molecule smart hydrogels inhibited the Hsp90/NF-κB signaling axis in inflammation to achieve sustained antipyretic effect.
In general, pseudoephedrine (PE) is a safe and universally employed in cold medicine, which displays powerful effect on antipyretic. Nonetheless, the sustained drug delivery system can effectively put an end to the above problems attributable to the drawbacks of low bioavailability and short intervals of administration. "Complexation" hydrogels are capturing enormous attention in a diverse array of fields in that there is no necessity to carry out external intervention for drug delivery. Nevertheless, it is prevalently acknowledged that macromolecular "complexation" hydrogels, biotin/avidin, antibodies/antigens, heterodimers, conA/glucose and cyclodextrin (CD) inclusion complexes, have several limitations of conventional drug delivery systems, such as unfavorable biological safety, undesirable intestinal wall penetrating, and extremely limited biodegradability, etc. For this reason, it is tremendously imperative to develop a natural small "complexation" hydrogel. In this context, we innovated a direct self-assembly "complexation" hydrogel (PE-GA). The PE-GA hydrogel was prepared by the incorporation of PE and glycyrrhizic acid (GA) into an aqueous dispersion without the aid of other carriers, which demonstrated dual-responsiveness including heating-cooling as well as pH. It is mainly governed by hydrogen bonds and electrostatic interactions. For cell bioavailability, there were substantial discrepancies between the PE-GA hydrogel and free PE at 72 and 84 h. For pharmacokinetic properties, there was also conspicuous discrepancy in Area Under the Curve (AUC) values between them. In subsequent antipyretic assay, PE-GA hydrogel displayed a conspicuous antipyretic effect in fever rats induced by LPS. The non-invasive fluorescence imaging was utilized to monitor the intestinal retention of the PE-GA hydrogel in mice, its unique aggregation/assembly induced retention (AIR) effect reinforced bioactive molecule retention, which may be another manifestation of enhancing antipyretic effect. Aside from that, PE-GA hydrogel played an antipyretic role by Hsp90/NF-κB pathway. The current research revealed potential antipyretic effect of PE-GA hydrogel which could be the therapeutic option against fever.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.