Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi
{"title":"采用共价有机框架(COF)作为载体的适体靶向治疗纳米平台:其体外和体内治疗和诊断特性的研究。","authors":"Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi","doi":"10.1080/1061186X.2025.2527865","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging <i>via</i> MRI and enhanced therapeutic efficacy through targeted drug delivery. Both <i>in vitro</i> and <i>in vivo</i> experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-10"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing covalent organic framework (COF) as carrier in an aptamer-targeted theranostic nanoplatform: investigation of its therapeutic and diagnostic properties <i>in vitro</i> and <i>in vivo</i>.\",\"authors\":\"Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi\",\"doi\":\"10.1080/1061186X.2025.2527865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging <i>via</i> MRI and enhanced therapeutic efficacy through targeted drug delivery. Both <i>in vitro</i> and <i>in vivo</i> experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2527865\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2527865","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Employing covalent organic framework (COF) as carrier in an aptamer-targeted theranostic nanoplatform: investigation of its therapeutic and diagnostic properties in vitro and in vivo.
In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging via MRI and enhanced therapeutic efficacy through targeted drug delivery. Both in vitro and in vivo experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.