采用共价有机框架(COF)作为载体的适体靶向治疗纳米平台:其体外和体内治疗和诊断特性的研究。

IF 3.9 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi
{"title":"采用共价有机框架(COF)作为载体的适体靶向治疗纳米平台:其体外和体内治疗和诊断特性的研究。","authors":"Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi","doi":"10.1080/1061186X.2025.2527865","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging <i>via</i> MRI and enhanced therapeutic efficacy through targeted drug delivery. Both <i>in vitro</i> and <i>in vivo</i> experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-10"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing covalent organic framework (COF) as carrier in an aptamer-targeted theranostic nanoplatform: investigation of its therapeutic and diagnostic properties <i>in vitro</i> and <i>in vivo</i>.\",\"authors\":\"Seyed Mojtaba Mashmoul Moghadam, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi\",\"doi\":\"10.1080/1061186X.2025.2527865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging <i>via</i> MRI and enhanced therapeutic efficacy through targeted drug delivery. Both <i>in vitro</i> and <i>in vivo</i> experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2527865\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2527865","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发了一种新的治疗纳米平台,将共价有机框架(COF)与超顺磁性氧化铁纳米颗粒(SPIONs)结合在一起,用于靶向癌症治疗和诊断。该系统被设计为共同递送铁螯合剂去铁酸铁(DFX)和muc1特异性适配体,用于选择性靶向癌细胞。这种多功能结构可以通过MRI同时成像,并通过靶向药物输送增强治疗效果。与非靶向对照相比,体外和体内实验均显示出有希望的抗肿瘤性能和对癌细胞的选择性细胞毒性。这些发现突出了基于cof的平台在推进个性化纳米医学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing covalent organic framework (COF) as carrier in an aptamer-targeted theranostic nanoplatform: investigation of its therapeutic and diagnostic properties in vitro and in vivo.

In this study, we developed a novel theranostic nanoplatform integrating a covalent organic framework (COF) with superparamagnetic iron oxide nanoparticles (SPIONs) for targeted cancer therapy and diagnosis. The system was engineered to co-deliver deferasirox (DFX), an iron chelator, and a MUC1-specific aptamer for selective targeting of cancer cells. This multifunctional architecture enables simultaneous imaging via MRI and enhanced therapeutic efficacy through targeted drug delivery. Both in vitro and in vivo experiments demonstrated promising antitumor performance and selective cytotoxicity towards cancer cells compared to non-targeted controls. These findings highlight the potential of COF-based platforms in advancing personalised nanomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信