Hassan Sher, Haley Hardtke, Wenzhu Tang, Jie Ren, Hayat Ullah, Xudong Zhou, Y Jessie Zhang, Jixun Zhan
{"title":"SsDiHal:一种新型色氨酸二卤酶的发现和工程。","authors":"Hassan Sher, Haley Hardtke, Wenzhu Tang, Jie Ren, Hayat Ullah, Xudong Zhou, Y Jessie Zhang, Jixun Zhan","doi":"10.1186/s13036-025-00518-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Halogenation plays a crucial role in enhancing the properties of small molecules, particularly by making them more effective for applications in agrochemicals and pharmaceuticals. Notably, approximately a quarter of current pharmaceuticals are halogenated. While chemical halogenation remains the most widely employed method for producing halogenated molecules, it has significant drawbacks, including extreme reaction conditions, heavy pollution, and the use of toxic reagents. In contrast, bio-halogenation offers a \"greener\" approach to generating halogenated compounds. However, its industrial application is limited due to the low activity and stability of naturally occurring halogenase enzymes.</p><p><strong>Results: </strong>In this study, we identified a novel tryptophan halogenase, SsDiHal, from Saccharothrix sp. NRRL B-16348 through genome mining. We found that SsDiHal catalyzes a two-step chlorination of tryptophan to sequentially yield 7-chlorotryptophan and 6,7-dichlorotryptophan, making SsDiHal the first naturally occurring tryptophan dihalogenase to be identified. Using a strcutral model of SsDiHal to guide mutagensis, several SsDiHal mutants were generated and tested for improved catalytic efficiency and altered regioselectivity. Compared to the halogenation activity of the wild type SsDiHal, the V53I, V53I/I83V and N470S mutants demonstrated significantly enhanced catalytic efficiency, with 7.7-, 4.16-, and 7.4-fold increases respectively, for the L-tryptophan substrate. While no change in regioselectivity was observed for the V53I, I83V, F112Y, and V53I/I83V mutants, a notable regioselectivity shift was found in the N470S mutant. Specifically, this mutant synthesized 6-chlorotryptophan as the first product, rather than the canonical 7-chlorotryptophan that is synthesized by wild type SsDiHal with no effect in its dihlogenation function.</p><p><strong>Conclusion: </strong>Overall, this work not only adds a novel dihalogenase to the growing field of halogenating enzymes but also demonstrates that leveraging a structrual model to guide engineering of halogenases can both enhance the catalytic efficiency and modify regioselectivity of the wild type enzyme. This work holds significant potential for green applications in the agrochemical and pharmaceutical industries.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"59"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220232/pdf/","citationCount":"0","resultStr":"{\"title\":\"SsDiHal: discovery and engineering of a novel tryptophan dihalogenase.\",\"authors\":\"Hassan Sher, Haley Hardtke, Wenzhu Tang, Jie Ren, Hayat Ullah, Xudong Zhou, Y Jessie Zhang, Jixun Zhan\",\"doi\":\"10.1186/s13036-025-00518-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Halogenation plays a crucial role in enhancing the properties of small molecules, particularly by making them more effective for applications in agrochemicals and pharmaceuticals. Notably, approximately a quarter of current pharmaceuticals are halogenated. While chemical halogenation remains the most widely employed method for producing halogenated molecules, it has significant drawbacks, including extreme reaction conditions, heavy pollution, and the use of toxic reagents. In contrast, bio-halogenation offers a \\\"greener\\\" approach to generating halogenated compounds. However, its industrial application is limited due to the low activity and stability of naturally occurring halogenase enzymes.</p><p><strong>Results: </strong>In this study, we identified a novel tryptophan halogenase, SsDiHal, from Saccharothrix sp. NRRL B-16348 through genome mining. We found that SsDiHal catalyzes a two-step chlorination of tryptophan to sequentially yield 7-chlorotryptophan and 6,7-dichlorotryptophan, making SsDiHal the first naturally occurring tryptophan dihalogenase to be identified. Using a strcutral model of SsDiHal to guide mutagensis, several SsDiHal mutants were generated and tested for improved catalytic efficiency and altered regioselectivity. Compared to the halogenation activity of the wild type SsDiHal, the V53I, V53I/I83V and N470S mutants demonstrated significantly enhanced catalytic efficiency, with 7.7-, 4.16-, and 7.4-fold increases respectively, for the L-tryptophan substrate. While no change in regioselectivity was observed for the V53I, I83V, F112Y, and V53I/I83V mutants, a notable regioselectivity shift was found in the N470S mutant. Specifically, this mutant synthesized 6-chlorotryptophan as the first product, rather than the canonical 7-chlorotryptophan that is synthesized by wild type SsDiHal with no effect in its dihlogenation function.</p><p><strong>Conclusion: </strong>Overall, this work not only adds a novel dihalogenase to the growing field of halogenating enzymes but also demonstrates that leveraging a structrual model to guide engineering of halogenases can both enhance the catalytic efficiency and modify regioselectivity of the wild type enzyme. This work holds significant potential for green applications in the agrochemical and pharmaceutical industries.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"59\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220232/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00518-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00518-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SsDiHal: discovery and engineering of a novel tryptophan dihalogenase.
Background: Halogenation plays a crucial role in enhancing the properties of small molecules, particularly by making them more effective for applications in agrochemicals and pharmaceuticals. Notably, approximately a quarter of current pharmaceuticals are halogenated. While chemical halogenation remains the most widely employed method for producing halogenated molecules, it has significant drawbacks, including extreme reaction conditions, heavy pollution, and the use of toxic reagents. In contrast, bio-halogenation offers a "greener" approach to generating halogenated compounds. However, its industrial application is limited due to the low activity and stability of naturally occurring halogenase enzymes.
Results: In this study, we identified a novel tryptophan halogenase, SsDiHal, from Saccharothrix sp. NRRL B-16348 through genome mining. We found that SsDiHal catalyzes a two-step chlorination of tryptophan to sequentially yield 7-chlorotryptophan and 6,7-dichlorotryptophan, making SsDiHal the first naturally occurring tryptophan dihalogenase to be identified. Using a strcutral model of SsDiHal to guide mutagensis, several SsDiHal mutants were generated and tested for improved catalytic efficiency and altered regioselectivity. Compared to the halogenation activity of the wild type SsDiHal, the V53I, V53I/I83V and N470S mutants demonstrated significantly enhanced catalytic efficiency, with 7.7-, 4.16-, and 7.4-fold increases respectively, for the L-tryptophan substrate. While no change in regioselectivity was observed for the V53I, I83V, F112Y, and V53I/I83V mutants, a notable regioselectivity shift was found in the N470S mutant. Specifically, this mutant synthesized 6-chlorotryptophan as the first product, rather than the canonical 7-chlorotryptophan that is synthesized by wild type SsDiHal with no effect in its dihlogenation function.
Conclusion: Overall, this work not only adds a novel dihalogenase to the growing field of halogenating enzymes but also demonstrates that leveraging a structrual model to guide engineering of halogenases can both enhance the catalytic efficiency and modify regioselectivity of the wild type enzyme. This work holds significant potential for green applications in the agrochemical and pharmaceutical industries.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.