Dienny Rodrigues de Souza, Lívia Do Carmo Silva, Kleber Santiago Freitas E Silva, Fabricio Silva de Jesus, Amanda Alves de Oliveira, Bruno Junior Neves, Maristela Pereira
{"title":"利用机器学习鉴定抗白色念珠菌的抗真菌化合物。","authors":"Dienny Rodrigues de Souza, Lívia Do Carmo Silva, Kleber Santiago Freitas E Silva, Fabricio Silva de Jesus, Amanda Alves de Oliveira, Bruno Junior Neves, Maristela Pereira","doi":"10.1080/17460913.2025.2525717","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against <i>Candida albicans</i>.</p><p><strong>Materials & methods: </strong>Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays.</p><p><strong>Results: </strong>Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively.</p><p><strong>Conclusions: </strong>The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"1-11"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing machine learning for identifying antifungal compounds against <i>Candida albicans</i>.\",\"authors\":\"Dienny Rodrigues de Souza, Lívia Do Carmo Silva, Kleber Santiago Freitas E Silva, Fabricio Silva de Jesus, Amanda Alves de Oliveira, Bruno Junior Neves, Maristela Pereira\",\"doi\":\"10.1080/17460913.2025.2525717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against <i>Candida albicans</i>.</p><p><strong>Materials & methods: </strong>Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays.</p><p><strong>Results: </strong>Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively.</p><p><strong>Conclusions: </strong>The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.</p>\",\"PeriodicalId\":12773,\"journal\":{\"name\":\"Future microbiology\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17460913.2025.2525717\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2025.2525717","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Employing machine learning for identifying antifungal compounds against Candida albicans.
Aims: To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against Candida albicans.
Materials & methods: Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays.
Results: Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively.
Conclusions: The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.