Halostella sp. PRR32新盐溶素的鉴定与特性研究。

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Jin, Juntao Ke, Yuling Hao, Aodi Zhang, Han Wu, Yue Ding, Shengda Zhao, Jing Han, Aimin Liu, Shaoxing Chen
{"title":"Halostella sp. PRR32新盐溶素的鉴定与特性研究。","authors":"Yu Jin, Juntao Ke, Yuling Hao, Aodi Zhang, Han Wu, Yue Ding, Shengda Zhao, Jing Han, Aimin Liu, Shaoxing Chen","doi":"10.1007/s00792-025-01389-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular proteases produced by haloarchaea, termed halolysins, possess potential applications in diverse fields including food fermentation and bio-remediation. In this study, an extracellular protease encoding gene, hly32<sup>PRR32</sup>, from Halostella sp. PRR32 isolated from a salt mine in Anhui, China, was identified and expressed in Escherichia coli. The expressed protein MBP-Hly32 was purified and biochemically characterized. The results indicate that Hly32 belongs to the S8 family of serine proteases (halolysin). A BLAST search on NCBI reveals that Hly32 has an amino acid sequence identity of 68.87% with serine protease Hly176B from Haloarchaeobius sp. FL176. MBP-Hly32 contains a catalytic triad of Asp<sup>159</sup>-His<sup>198</sup>-Ser<sup>350</sup> and two C-terminal extensions which are crucial for its activity. The optimal conditions for its enzyme activity are 50 °C, pH 8.0, and 4.0 M NaCl. Under these conditions, the K<sub>m</sub>, V<sub>max</sub> and K<sub>cat</sub> for the MBP-Hly32 were determined to be 2.34 mM, 935.50 U·mg<sup>-1</sup> and 1472.40 s<sup>-1</sup>, respectively. Metal ions and organic reagents affect its activity differently from the typical halolysins; for example, Ca<sup>2+</sup>, which enhances the activity of other halolysin enzymes, has no effect on MBP-Hly32. Furthermore, the activity of Hly32 was inhibited by the presence of PMSF, DTT, and EDTA. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and protein engineering halolysins to generate mutants with new physiological activities.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"29 2","pages":"25"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of a novel halolysin from Halostella sp. PRR32 with two C-terminal extensions.\",\"authors\":\"Yu Jin, Juntao Ke, Yuling Hao, Aodi Zhang, Han Wu, Yue Ding, Shengda Zhao, Jing Han, Aimin Liu, Shaoxing Chen\",\"doi\":\"10.1007/s00792-025-01389-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular proteases produced by haloarchaea, termed halolysins, possess potential applications in diverse fields including food fermentation and bio-remediation. In this study, an extracellular protease encoding gene, hly32<sup>PRR32</sup>, from Halostella sp. PRR32 isolated from a salt mine in Anhui, China, was identified and expressed in Escherichia coli. The expressed protein MBP-Hly32 was purified and biochemically characterized. The results indicate that Hly32 belongs to the S8 family of serine proteases (halolysin). A BLAST search on NCBI reveals that Hly32 has an amino acid sequence identity of 68.87% with serine protease Hly176B from Haloarchaeobius sp. FL176. MBP-Hly32 contains a catalytic triad of Asp<sup>159</sup>-His<sup>198</sup>-Ser<sup>350</sup> and two C-terminal extensions which are crucial for its activity. The optimal conditions for its enzyme activity are 50 °C, pH 8.0, and 4.0 M NaCl. Under these conditions, the K<sub>m</sub>, V<sub>max</sub> and K<sub>cat</sub> for the MBP-Hly32 were determined to be 2.34 mM, 935.50 U·mg<sup>-1</sup> and 1472.40 s<sup>-1</sup>, respectively. Metal ions and organic reagents affect its activity differently from the typical halolysins; for example, Ca<sup>2+</sup>, which enhances the activity of other halolysin enzymes, has no effect on MBP-Hly32. Furthermore, the activity of Hly32 was inhibited by the presence of PMSF, DTT, and EDTA. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and protein engineering halolysins to generate mutants with new physiological activities.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"29 2\",\"pages\":\"25\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-025-01389-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-025-01389-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由盐古菌产生的胞外蛋白酶被称为盐溶素,在食品发酵和生物修复等领域具有潜在的应用前景。本研究从安徽盐矿盐藻属(Halostella sp. PRR32)中分离到一种胞外蛋白酶编码基因hly32PRR32,并在大肠杆菌中表达。对表达蛋白MBP-Hly32进行纯化并进行生化表征。结果表明,Hly32属于丝氨酸蛋白酶(halolysin) S8家族。NCBI BLAST检索结果显示,Hly32与Haloarchaeobius sp. FL176丝氨酸蛋白酶Hly176B的氨基酸序列同源性为68.87%。MBP-Hly32含有Asp159-His198-Ser350催化三元组和两个c端延伸,这对其活性至关重要。其酶活性的最佳条件为50℃、pH 8.0、4.0 M NaCl。在此条件下,MBP-Hly32的Km、Vmax和Kcat分别为2.34 mM、935.50 U·mg-1和1472.40 s-1。金属离子和有机试剂对其活性的影响不同于典型的卤解素;例如,Ca2+可以增强其他卤溶素酶的活性,但对MBP-Hly32没有影响。此外,PMSF、DTT和EDTA的存在抑制了Hly32的活性。此外,本研究还获得了基于功能域的三维结构预测,这将为盐溶素的修饰和蛋白质工程产生具有新的生理活性的突变体提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and characterization of a novel halolysin from Halostella sp. PRR32 with two C-terminal extensions.

Extracellular proteases produced by haloarchaea, termed halolysins, possess potential applications in diverse fields including food fermentation and bio-remediation. In this study, an extracellular protease encoding gene, hly32PRR32, from Halostella sp. PRR32 isolated from a salt mine in Anhui, China, was identified and expressed in Escherichia coli. The expressed protein MBP-Hly32 was purified and biochemically characterized. The results indicate that Hly32 belongs to the S8 family of serine proteases (halolysin). A BLAST search on NCBI reveals that Hly32 has an amino acid sequence identity of 68.87% with serine protease Hly176B from Haloarchaeobius sp. FL176. MBP-Hly32 contains a catalytic triad of Asp159-His198-Ser350 and two C-terminal extensions which are crucial for its activity. The optimal conditions for its enzyme activity are 50 °C, pH 8.0, and 4.0 M NaCl. Under these conditions, the Km, Vmax and Kcat for the MBP-Hly32 were determined to be 2.34 mM, 935.50 U·mg-1 and 1472.40 s-1, respectively. Metal ions and organic reagents affect its activity differently from the typical halolysins; for example, Ca2+, which enhances the activity of other halolysin enzymes, has no effect on MBP-Hly32. Furthermore, the activity of Hly32 was inhibited by the presence of PMSF, DTT, and EDTA. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and protein engineering halolysins to generate mutants with new physiological activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信