{"title":"给大脑充电:细胞间线粒体质量控制及其在中风中的意义。","authors":"Xinyu Zhou, Shenzhe Wu, Tianxi Huang, Yue Li, Jianhong Yang, Zhen Gu, Xiangnan Zhang","doi":"10.2174/011570159X388351250620065716","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powering Up the Brain: Intercellular Mitochondrial Quality Control and Its Implication in Stroke.\",\"authors\":\"Xinyu Zhou, Shenzhe Wu, Tianxi Huang, Yue Li, Jianhong Yang, Zhen Gu, Xiangnan Zhang\",\"doi\":\"10.2174/011570159X388351250620065716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.</p>\",\"PeriodicalId\":10905,\"journal\":{\"name\":\"Current Neuropharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011570159X388351250620065716\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X388351250620065716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Powering Up the Brain: Intercellular Mitochondrial Quality Control and Its Implication in Stroke.
Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.