给大脑充电:细胞间线粒体质量控制及其在中风中的意义。

IF 5.3 2区 医学 Q1 NEUROSCIENCES
Xinyu Zhou, Shenzhe Wu, Tianxi Huang, Yue Li, Jianhong Yang, Zhen Gu, Xiangnan Zhang
{"title":"给大脑充电:细胞间线粒体质量控制及其在中风中的意义。","authors":"Xinyu Zhou, Shenzhe Wu, Tianxi Huang, Yue Li, Jianhong Yang, Zhen Gu, Xiangnan Zhang","doi":"10.2174/011570159X388351250620065716","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powering Up the Brain: Intercellular Mitochondrial Quality Control and Its Implication in Stroke.\",\"authors\":\"Xinyu Zhou, Shenzhe Wu, Tianxi Huang, Yue Li, Jianhong Yang, Zhen Gu, Xiangnan Zhang\",\"doi\":\"10.2174/011570159X388351250620065716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.</p>\",\"PeriodicalId\":10905,\"journal\":{\"name\":\"Current Neuropharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011570159X388351250620065716\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X388351250620065716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

线粒体对神经元的存活和功能至关重要,其失调与包括中风在内的各种神经系统疾病的发病率和患病率密切相关。线粒体质量控制(MQC)对于维持线粒体完整性至关重要,特别是在神经元中。在缺血条件下,神经元进化出一系列适应性策略,通过产生功能性线粒体或通过自噬消除功能失调的线粒体来动态维持线粒体功能,这两种策略在卒中条件下保持神经元存活中起着关键作用。除了这些细胞内策略,MQC的细胞间机制已经在神经系统中被观察到。来自健康细胞的功能性线粒体可以以不同的方式补充到缺血神经元中,从而恢复受体细胞的线粒体网络。相反,受伤的神经元释放出功能失调的线粒体,这些线粒体可以被邻近的神经胶质细胞进一步降解。另外,被丢弃的线粒体对周围细胞构成威胁,并可能破坏神经系统的内稳态。本文综述了神经系统细胞间MQC的主要发现,并进一步讨论了细胞间MQC策略对脑卒中治疗的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powering Up the Brain: Intercellular Mitochondrial Quality Control and Its Implication in Stroke.

Mitochondria are critical for neuronal survival and function, and their dysregulation is closely related to the incidence and prevalence of various neurological disorders, including stroke. Mitochondrial quality control (MQC) is vital for maintaining mitochondrial integrity, particularly in neurons. Under ischemic conditions, neurons evolve a range of adaptive strategies to preserve mitochondria function dynamically, either by generating functional mitochondria or by eliminating dysfunctional ones via autophagy, both of which play key roles in keeping neuronal survival under the conditions of stroke. Besides these intracellular strategies, the intercellular mechanisms underlying MQC have been observed in the nervous system. Functional mitochondria from healthy cells can be supplemented to ischemic neurons in distinct manners and thus restore the mitochondrial network of recipient cells. Conversely, injured neurons release dysfunctional mitochondria, which can be further degraded by adjacent glial cells. Alternatively, the discarded mitochondria act as a threat to surrounding cells and can disrupt the homeostasis of the nervous system. In this review, the key discoveries in intercellular MQC in the nervous system were summarized, and further discussed the implications of intercellular MQC strategies for stroke therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Neuropharmacology
Current Neuropharmacology 医学-神经科学
CiteScore
8.70
自引率
1.90%
发文量
369
审稿时长
>12 weeks
期刊介绍: Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience. The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信