{"title":"ythdf1介导的GLUT1 m6A甲基化促进婴儿血管瘤的进展并抑制心得安敏感性。","authors":"Yunfeng Du, Pengyuan Li, Xianghong Du","doi":"10.1002/cbin.70059","DOIUrl":null,"url":null,"abstract":"<p><p>Early intervention for infantile hemangioma (IH) typically involves the use of the first-line drug propranolol, which can be taken orally or applied topically. However, approximately 10% of patients develop resistance, highlighting the need to elucidate the underlying molecular mechanisms. This study found that the expression of glucose transporter 1 (GLUT1) was significantly increased in IH tissues. Knockdown of GLUT1 significantly inhibited the cell viability, colony formation, and angiogenesis of HemEC cells. Moreover, high GLUT1 levels caused insensitivity to propranolol treatment in IH as HemEC cells showed few significant changes to intracellular GLUT1 protein expression and glycolysis level upon treatment with propranolol, while overexpression of GLUT1 promoted colony formation and increased the IC<sub>50</sub> value of HemEC cells with propranolol treatment. The YT521-B homology domain family protein 1 (YTHDF1), an m<sup>6</sup>A reader in mRNA, was significantly increased in IH tissues compared with normal adjacent tissues. MeRIP-qPCR results showed that YTHDF1 binds to GLUT1 mRNA and promoted its stability and translation efficiency, resulting in GLUT1 upregulation, thereby inhibiting the sensitivity of IH to propranolol. Additionally, YTHDF1 overexpression promoted the ability of colony formation and increased the IC<sub>50</sub> value of HemEC cells with propranolol treatment. However, this promotion was reversed by knockdown of GLUT1. Collectively, our results demonstrated that YTHDF1-mediated m<sup>6</sup>A recognition of GLUT1 is vital in IH development and propranolol insensitivity. The YTHDF1/GLUT1 axis may serve as a potential target for inhibiting IH progression from aggravating and overcoming propranolol resistance in IH.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YTHDF1-Mediated m<sup>6</sup>A Methylation of GLUT1 Promotes Progress and Suppresses Propranolol Sensitivity in Infantile Hemangioma.\",\"authors\":\"Yunfeng Du, Pengyuan Li, Xianghong Du\",\"doi\":\"10.1002/cbin.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early intervention for infantile hemangioma (IH) typically involves the use of the first-line drug propranolol, which can be taken orally or applied topically. However, approximately 10% of patients develop resistance, highlighting the need to elucidate the underlying molecular mechanisms. This study found that the expression of glucose transporter 1 (GLUT1) was significantly increased in IH tissues. Knockdown of GLUT1 significantly inhibited the cell viability, colony formation, and angiogenesis of HemEC cells. Moreover, high GLUT1 levels caused insensitivity to propranolol treatment in IH as HemEC cells showed few significant changes to intracellular GLUT1 protein expression and glycolysis level upon treatment with propranolol, while overexpression of GLUT1 promoted colony formation and increased the IC<sub>50</sub> value of HemEC cells with propranolol treatment. The YT521-B homology domain family protein 1 (YTHDF1), an m<sup>6</sup>A reader in mRNA, was significantly increased in IH tissues compared with normal adjacent tissues. MeRIP-qPCR results showed that YTHDF1 binds to GLUT1 mRNA and promoted its stability and translation efficiency, resulting in GLUT1 upregulation, thereby inhibiting the sensitivity of IH to propranolol. Additionally, YTHDF1 overexpression promoted the ability of colony formation and increased the IC<sub>50</sub> value of HemEC cells with propranolol treatment. However, this promotion was reversed by knockdown of GLUT1. Collectively, our results demonstrated that YTHDF1-mediated m<sup>6</sup>A recognition of GLUT1 is vital in IH development and propranolol insensitivity. The YTHDF1/GLUT1 axis may serve as a potential target for inhibiting IH progression from aggravating and overcoming propranolol resistance in IH.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbin.70059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
YTHDF1-Mediated m6A Methylation of GLUT1 Promotes Progress and Suppresses Propranolol Sensitivity in Infantile Hemangioma.
Early intervention for infantile hemangioma (IH) typically involves the use of the first-line drug propranolol, which can be taken orally or applied topically. However, approximately 10% of patients develop resistance, highlighting the need to elucidate the underlying molecular mechanisms. This study found that the expression of glucose transporter 1 (GLUT1) was significantly increased in IH tissues. Knockdown of GLUT1 significantly inhibited the cell viability, colony formation, and angiogenesis of HemEC cells. Moreover, high GLUT1 levels caused insensitivity to propranolol treatment in IH as HemEC cells showed few significant changes to intracellular GLUT1 protein expression and glycolysis level upon treatment with propranolol, while overexpression of GLUT1 promoted colony formation and increased the IC50 value of HemEC cells with propranolol treatment. The YT521-B homology domain family protein 1 (YTHDF1), an m6A reader in mRNA, was significantly increased in IH tissues compared with normal adjacent tissues. MeRIP-qPCR results showed that YTHDF1 binds to GLUT1 mRNA and promoted its stability and translation efficiency, resulting in GLUT1 upregulation, thereby inhibiting the sensitivity of IH to propranolol. Additionally, YTHDF1 overexpression promoted the ability of colony formation and increased the IC50 value of HemEC cells with propranolol treatment. However, this promotion was reversed by knockdown of GLUT1. Collectively, our results demonstrated that YTHDF1-mediated m6A recognition of GLUT1 is vital in IH development and propranolol insensitivity. The YTHDF1/GLUT1 axis may serve as a potential target for inhibiting IH progression from aggravating and overcoming propranolol resistance in IH.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.