[人工智能在公共卫生领域的应用、挑战和可靠使用]。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Joana Sarah Grah, Christopher Irrgang, Lars Schaade, Katharina Ladewig, Nils Körber
{"title":"[人工智能在公共卫生领域的应用、挑战和可靠使用]。","authors":"Joana Sarah Grah, Christopher Irrgang, Lars Schaade, Katharina Ladewig, Nils Körber","doi":"10.1007/s00103-025-04098-2","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancements in artificial intelligence (AI) over recent years have resulted in its integration into people's everyday lives. The wide availability of diverse data within the public health sector opens up a number of fields of application for AI, ranging from infection research and the analysis of epidemiological data to the extraction of information from communication data such as social media, the development of new resilience strategies against climate change and the systematic evaluation of specialist literature.The quality of the underlying data is paramount to the successful implementation of AI applications. In public health research, on the one hand, there is a wide variability of data types including, but not limited to, image data, numerical data and survey data. On the other hand, availability can be limited, for example when a rare pathology is being investigated and/or stringent data protection requirements apply. Concurrently, it is imperative to maintain high ethical standards and to mitigate biases, imbalances and lack of transparency as early as possible.We delineate an approach towards the responsible and trustworthy utilisation of AI applications in public health, which leads from the initial question to the data and the model development to evaluation and emphasises the importance of careful and complete documentation.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Applications, challenges and a trustworthy use of artificial intelligence in public health].\",\"authors\":\"Joana Sarah Grah, Christopher Irrgang, Lars Schaade, Katharina Ladewig, Nils Körber\",\"doi\":\"10.1007/s00103-025-04098-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancements in artificial intelligence (AI) over recent years have resulted in its integration into people's everyday lives. The wide availability of diverse data within the public health sector opens up a number of fields of application for AI, ranging from infection research and the analysis of epidemiological data to the extraction of information from communication data such as social media, the development of new resilience strategies against climate change and the systematic evaluation of specialist literature.The quality of the underlying data is paramount to the successful implementation of AI applications. In public health research, on the one hand, there is a wide variability of data types including, but not limited to, image data, numerical data and survey data. On the other hand, availability can be limited, for example when a rare pathology is being investigated and/or stringent data protection requirements apply. Concurrently, it is imperative to maintain high ethical standards and to mitigate biases, imbalances and lack of transparency as early as possible.We delineate an approach towards the responsible and trustworthy utilisation of AI applications in public health, which leads from the initial question to the data and the model development to evaluation and emphasises the importance of careful and complete documentation.</p>\",\"PeriodicalId\":9562,\"journal\":{\"name\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00103-025-04098-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04098-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能(AI)的快速发展使其融入了人们的日常生活。公共卫生部门广泛提供各种数据,为人工智能开辟了许多应用领域,从感染研究和流行病学数据分析,到从社交媒体等通信数据中提取信息,制定新的气候变化复原力战略,以及对专家文献进行系统评估。底层数据的质量对于人工智能应用的成功实施至关重要。在公共卫生研究中,一方面,数据类型有很大差异,包括但不限于图像数据、数值数据和调查数据。另一方面,可用性可能是有限的,例如,当正在调查罕见的病理和/或适用严格的数据保护要求时。同时,必须保持较高的道德标准,尽早减轻偏见、不平衡和缺乏透明度。我们描述了一种在公共卫生中负责任和可信赖地利用人工智能应用程序的方法,从最初的问题到数据和模型开发到评估,并强调了仔细和完整文档的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Applications, challenges and a trustworthy use of artificial intelligence in public health].

The rapid advancements in artificial intelligence (AI) over recent years have resulted in its integration into people's everyday lives. The wide availability of diverse data within the public health sector opens up a number of fields of application for AI, ranging from infection research and the analysis of epidemiological data to the extraction of information from communication data such as social media, the development of new resilience strategies against climate change and the systematic evaluation of specialist literature.The quality of the underlying data is paramount to the successful implementation of AI applications. In public health research, on the one hand, there is a wide variability of data types including, but not limited to, image data, numerical data and survey data. On the other hand, availability can be limited, for example when a rare pathology is being investigated and/or stringent data protection requirements apply. Concurrently, it is imperative to maintain high ethical standards and to mitigate biases, imbalances and lack of transparency as early as possible.We delineate an approach towards the responsible and trustworthy utilisation of AI applications in public health, which leads from the initial question to the data and the model development to evaluation and emphasises the importance of careful and complete documentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
5.90%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen. Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信