[基于人工智能的医学图像计算应用]。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Timo Kepp, Hristina Uzunova, Jan Ehrhardt, Heinz Handels
{"title":"[基于人工智能的医学图像计算应用]。","authors":"Timo Kepp, Hristina Uzunova, Jan Ehrhardt, Heinz Handels","doi":"10.1007/s00103-025-04093-7","DOIUrl":null,"url":null,"abstract":"<p><p>The processing of medical images plays a central role in modern diagnostics and therapy. Automated processing and analysis of medical images can efficiently accelerate clinical workflows and open new opportunities for improved patient care. However, the high variability, complexity, and varying quality of medical image data pose significant challenges. In recent years, the greatest progress in medical image analysis has been achieved through artificial intelligence (AI), particularly by using deep neural networks in the context of deep learning. These methods are successfully applied in medical image analysis, including segmentation, registration, and image synthesis.AI-based segmentation allows for the precise delineation of organs, tissues, or pathological changes. The application of AI-based image registration supports the accelerated creation of 3D planning models for complex surgeries by aligning relevant anatomical structures from different imaging modalities (e.g., CT, MRI, and PET) or time points. Generative AI methods can be used to generate additional image data for the improved training of AI models, thereby expanding the potential applications of deep learning methods in medicine. Examples from radiology, ophthalmology, dermatology, and surgery are described to illustrate their practical relevance and the potential of AI in image-based diagnostics and therapy.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[AI-based applications in medical image computing].\",\"authors\":\"Timo Kepp, Hristina Uzunova, Jan Ehrhardt, Heinz Handels\",\"doi\":\"10.1007/s00103-025-04093-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The processing of medical images plays a central role in modern diagnostics and therapy. Automated processing and analysis of medical images can efficiently accelerate clinical workflows and open new opportunities for improved patient care. However, the high variability, complexity, and varying quality of medical image data pose significant challenges. In recent years, the greatest progress in medical image analysis has been achieved through artificial intelligence (AI), particularly by using deep neural networks in the context of deep learning. These methods are successfully applied in medical image analysis, including segmentation, registration, and image synthesis.AI-based segmentation allows for the precise delineation of organs, tissues, or pathological changes. The application of AI-based image registration supports the accelerated creation of 3D planning models for complex surgeries by aligning relevant anatomical structures from different imaging modalities (e.g., CT, MRI, and PET) or time points. Generative AI methods can be used to generate additional image data for the improved training of AI models, thereby expanding the potential applications of deep learning methods in medicine. Examples from radiology, ophthalmology, dermatology, and surgery are described to illustrate their practical relevance and the potential of AI in image-based diagnostics and therapy.</p>\",\"PeriodicalId\":9562,\"journal\":{\"name\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00103-025-04093-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04093-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

医学图像的处理在现代诊断和治疗中起着核心作用。医学图像的自动化处理和分析可以有效地加快临床工作流程,并为改善患者护理开辟新的机会。然而,医学图像数据的高可变性、复杂性和不同质量构成了重大挑战。近年来,医学图像分析的最大进展是通过人工智能(AI),特别是在深度学习背景下使用深度神经网络实现的。这些方法已成功地应用于医学图像分析,包括分割、配准和图像合成。基于人工智能的分割允许对器官、组织或病理变化进行精确的描绘。基于人工智能的图像配准应用支持通过对齐来自不同成像方式(如CT、MRI和PET)或时间点的相关解剖结构来加速复杂手术的3D规划模型的创建。生成式人工智能方法可用于生成额外的图像数据,以改进人工智能模型的训练,从而扩大深度学习方法在医学中的潜在应用。本文描述了放射学、眼科、皮肤病学和外科的例子,以说明它们的实际相关性和人工智能在基于图像的诊断和治疗中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[AI-based applications in medical image computing].

The processing of medical images plays a central role in modern diagnostics and therapy. Automated processing and analysis of medical images can efficiently accelerate clinical workflows and open new opportunities for improved patient care. However, the high variability, complexity, and varying quality of medical image data pose significant challenges. In recent years, the greatest progress in medical image analysis has been achieved through artificial intelligence (AI), particularly by using deep neural networks in the context of deep learning. These methods are successfully applied in medical image analysis, including segmentation, registration, and image synthesis.AI-based segmentation allows for the precise delineation of organs, tissues, or pathological changes. The application of AI-based image registration supports the accelerated creation of 3D planning models for complex surgeries by aligning relevant anatomical structures from different imaging modalities (e.g., CT, MRI, and PET) or time points. Generative AI methods can be used to generate additional image data for the improved training of AI models, thereby expanding the potential applications of deep learning methods in medicine. Examples from radiology, ophthalmology, dermatology, and surgery are described to illustrate their practical relevance and the potential of AI in image-based diagnostics and therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
5.90%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen. Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信