{"title":"单细胞转录组学和时间序列代谢谱揭示了PAP1对拟南芥类黄酮生物合成基因和植物激素稳态的时空调控。","authors":"Bingxu Zhang, Thomas Ka Yam Lam, Linheng Chen, Chen Zhang, Liping Zhu, Hailei Zhang, Pengxi Wang, Jianing Wang, Zongwei Cai, Yiji Xia","doi":"10.1186/s12915-025-02297-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the spatiotemporal regulation of specialized metabolism in plants is critical for advancing both basic plant biology and biotechnological applications. PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) is a well-known transcription factor that plays a key regulatory role in the biosynthesis pathway of plant flavonoids. Similar to other secondary metabolites, flavonoid biosynthesis displays cell heterogeneity. However, the cell-specific regulation network of the flavonoid biosynthetic pathway remains unclear.</p><p><strong>Results: </strong>In this study, we utilized single-cell RNA sequencing (scRNA-seq) and time-series metabolite profiling to investigate the regulation of flavonoid biosynthesis and phytohormone homeostasis in Arabidopsis thaliana by PAP1. By comparing single-cell transcriptomes of the pap1-D mutant and wild-type plant leaves, we constructed a cell-type-specific atlas of gene expression and high-resolution dynamics of metabolites across developmental stages. Our findings reveal that PAP1 overexpression induces distinct spatiotemporal regulation of phenylpropanoid pathway genes in different cell types and widespread upregulation of glycosylation processes. Metabolomic profiling validated these transcriptional patterns and showed significant changes of metabolites in phenylalanine metabolic processes as pap1-D leaf matures. Additionally, PAP1 overexpression leads to significant changes in phytohormone levels, particularly jasmonate and salicylate, indicating complex crosstalk between flavonoid biosynthesis and hormone homeostasis.</p><p><strong>Conclusions: </strong>This integrated multi-omics approach provides unprecedented insights into the cell-specific regulatory networks controlling specialized metabolism and establishes a valuable framework for optimizing metabolic engineering strategies to enhance the production of bioactive plant compounds.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"191"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220432/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptomics and time-series metabolite profiling reveal the spatiotemporal regulation of flavonoid biosynthesis genes and phytohormone homeostasis by PAP1 in Arabidopsis.\",\"authors\":\"Bingxu Zhang, Thomas Ka Yam Lam, Linheng Chen, Chen Zhang, Liping Zhu, Hailei Zhang, Pengxi Wang, Jianing Wang, Zongwei Cai, Yiji Xia\",\"doi\":\"10.1186/s12915-025-02297-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Understanding the spatiotemporal regulation of specialized metabolism in plants is critical for advancing both basic plant biology and biotechnological applications. PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) is a well-known transcription factor that plays a key regulatory role in the biosynthesis pathway of plant flavonoids. Similar to other secondary metabolites, flavonoid biosynthesis displays cell heterogeneity. However, the cell-specific regulation network of the flavonoid biosynthetic pathway remains unclear.</p><p><strong>Results: </strong>In this study, we utilized single-cell RNA sequencing (scRNA-seq) and time-series metabolite profiling to investigate the regulation of flavonoid biosynthesis and phytohormone homeostasis in Arabidopsis thaliana by PAP1. By comparing single-cell transcriptomes of the pap1-D mutant and wild-type plant leaves, we constructed a cell-type-specific atlas of gene expression and high-resolution dynamics of metabolites across developmental stages. Our findings reveal that PAP1 overexpression induces distinct spatiotemporal regulation of phenylpropanoid pathway genes in different cell types and widespread upregulation of glycosylation processes. Metabolomic profiling validated these transcriptional patterns and showed significant changes of metabolites in phenylalanine metabolic processes as pap1-D leaf matures. Additionally, PAP1 overexpression leads to significant changes in phytohormone levels, particularly jasmonate and salicylate, indicating complex crosstalk between flavonoid biosynthesis and hormone homeostasis.</p><p><strong>Conclusions: </strong>This integrated multi-omics approach provides unprecedented insights into the cell-specific regulatory networks controlling specialized metabolism and establishes a valuable framework for optimizing metabolic engineering strategies to enhance the production of bioactive plant compounds.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"191\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220432/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02297-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02297-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Single-cell transcriptomics and time-series metabolite profiling reveal the spatiotemporal regulation of flavonoid biosynthesis genes and phytohormone homeostasis by PAP1 in Arabidopsis.
Background: Understanding the spatiotemporal regulation of specialized metabolism in plants is critical for advancing both basic plant biology and biotechnological applications. PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) is a well-known transcription factor that plays a key regulatory role in the biosynthesis pathway of plant flavonoids. Similar to other secondary metabolites, flavonoid biosynthesis displays cell heterogeneity. However, the cell-specific regulation network of the flavonoid biosynthetic pathway remains unclear.
Results: In this study, we utilized single-cell RNA sequencing (scRNA-seq) and time-series metabolite profiling to investigate the regulation of flavonoid biosynthesis and phytohormone homeostasis in Arabidopsis thaliana by PAP1. By comparing single-cell transcriptomes of the pap1-D mutant and wild-type plant leaves, we constructed a cell-type-specific atlas of gene expression and high-resolution dynamics of metabolites across developmental stages. Our findings reveal that PAP1 overexpression induces distinct spatiotemporal regulation of phenylpropanoid pathway genes in different cell types and widespread upregulation of glycosylation processes. Metabolomic profiling validated these transcriptional patterns and showed significant changes of metabolites in phenylalanine metabolic processes as pap1-D leaf matures. Additionally, PAP1 overexpression leads to significant changes in phytohormone levels, particularly jasmonate and salicylate, indicating complex crosstalk between flavonoid biosynthesis and hormone homeostasis.
Conclusions: This integrated multi-omics approach provides unprecedented insights into the cell-specific regulatory networks controlling specialized metabolism and establishes a valuable framework for optimizing metabolic engineering strategies to enhance the production of bioactive plant compounds.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.