Yang Zi-Yang, Wang Qi, Xingyan Liu, Haolin Li, Shouhong Wang, Danqing Yu, Xuebiao Wei
{"title":"感染性心内膜炎患者死亡率预测模型:一种机器学习方法。","authors":"Yang Zi-Yang, Wang Qi, Xingyan Liu, Haolin Li, Shouhong Wang, Danqing Yu, Xuebiao Wei","doi":"10.1186/s12911-025-03025-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infective endocarditis (IE) is a fatal cardiovascular disease with varied clinical manifestations but rapid progression. A series of existing risk models helped identify IE patients with high risk, but the imperfect predictive performance and limited application called for better predictive systems.</p><p><strong>Methods: </strong>The single-centered, retrospective observational study applied four machine learning methods for predictive model construction: LASSO logistic regression, random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN). A 10-fold cross-validated area under the receiver operating characteristic curve (AUC-ROC) was used for performance evaluation.</p><p><strong>Results: </strong>A total of 1705 patients with IE were enrolled in the study, with 119 in-hospital deaths and 178 deaths after 6-month follow-up. RF achieved the highest AUC-ROCs for in-hospital and six-month mortality prediction (in-hospital: 0.83, 6-month: 0.85). RF was also applied to assess variable importance. The following variables were selected by RF as top important predictors for both in-hospital and six-month mortality prediction: total bilirubin, N-terminal pro-B-type natriuretic peptide, albumin, diastolic blood pressure, fasting blood glucose, uric acid, and age.</p><p><strong>Conclusions: </strong>A risk model with machine learning approach was integrated in purpose of prognosis prediction in IE patients, helping rapid risk stratification and in-time management clinically.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"229"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220579/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mortality predicting models for patients with infective endocarditis: a machine learning approach.\",\"authors\":\"Yang Zi-Yang, Wang Qi, Xingyan Liu, Haolin Li, Shouhong Wang, Danqing Yu, Xuebiao Wei\",\"doi\":\"10.1186/s12911-025-03025-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Infective endocarditis (IE) is a fatal cardiovascular disease with varied clinical manifestations but rapid progression. A series of existing risk models helped identify IE patients with high risk, but the imperfect predictive performance and limited application called for better predictive systems.</p><p><strong>Methods: </strong>The single-centered, retrospective observational study applied four machine learning methods for predictive model construction: LASSO logistic regression, random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN). A 10-fold cross-validated area under the receiver operating characteristic curve (AUC-ROC) was used for performance evaluation.</p><p><strong>Results: </strong>A total of 1705 patients with IE were enrolled in the study, with 119 in-hospital deaths and 178 deaths after 6-month follow-up. RF achieved the highest AUC-ROCs for in-hospital and six-month mortality prediction (in-hospital: 0.83, 6-month: 0.85). RF was also applied to assess variable importance. The following variables were selected by RF as top important predictors for both in-hospital and six-month mortality prediction: total bilirubin, N-terminal pro-B-type natriuretic peptide, albumin, diastolic blood pressure, fasting blood glucose, uric acid, and age.</p><p><strong>Conclusions: </strong>A risk model with machine learning approach was integrated in purpose of prognosis prediction in IE patients, helping rapid risk stratification and in-time management clinically.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"25 1\",\"pages\":\"229\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220579/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-025-03025-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03025-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Mortality predicting models for patients with infective endocarditis: a machine learning approach.
Background: Infective endocarditis (IE) is a fatal cardiovascular disease with varied clinical manifestations but rapid progression. A series of existing risk models helped identify IE patients with high risk, but the imperfect predictive performance and limited application called for better predictive systems.
Methods: The single-centered, retrospective observational study applied four machine learning methods for predictive model construction: LASSO logistic regression, random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN). A 10-fold cross-validated area under the receiver operating characteristic curve (AUC-ROC) was used for performance evaluation.
Results: A total of 1705 patients with IE were enrolled in the study, with 119 in-hospital deaths and 178 deaths after 6-month follow-up. RF achieved the highest AUC-ROCs for in-hospital and six-month mortality prediction (in-hospital: 0.83, 6-month: 0.85). RF was also applied to assess variable importance. The following variables were selected by RF as top important predictors for both in-hospital and six-month mortality prediction: total bilirubin, N-terminal pro-B-type natriuretic peptide, albumin, diastolic blood pressure, fasting blood glucose, uric acid, and age.
Conclusions: A risk model with machine learning approach was integrated in purpose of prognosis prediction in IE patients, helping rapid risk stratification and in-time management clinically.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.