Haiyang Han, Heng Sun, Chang Zhou, Li Wei, Liang Xu, Dian Shen, Wenshu Hu
{"title":"基于超声影像特征和临床参数的孤立性甲状腺乳头状微癌中央室性淋巴结转移机器学习模型的建立和验证。","authors":"Haiyang Han, Heng Sun, Chang Zhou, Li Wei, Liang Xu, Dian Shen, Wenshu Hu","doi":"10.1186/s12880-025-01757-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treatment decisions prior to microwave ablation of thyroid nodules. The objective of this study was to develop a predictive model for CCLNM in patients with solitary PTMC on the basis of a combination of ultrasound radiomics and clinical parameters.</p><p><strong>Methods: </strong>We retrospectively analyzed data from 480 patients diagnosed with PTMC via postoperative pathological examination. The patients were randomly divided into a training set (n = 336) and a validation set (n = 144) at a 7:3 ratio. The cohort was stratified into a metastasis group and a nonmetastasis group on the basis of postoperative pathological results. Ultrasound radiomic features were extracted from routine thyroid ultrasound images, and multiple feature selection methods were applied to construct radiomic models for each group. Independent risk factors, along with radiomics features identified through multivariate logistic regression analysis, were subsequently refined through additional feature selection techniques to develop combined predictive models. The performance of each model was then evaluated.</p><p><strong>Results: </strong>The combined model, which incorporates age, the presence of Hashimoto's thyroiditis (HT), and radiomics features selected via an optimal feature selection approach (percentage-based), exhibited superior predictive efficacy, with AUC values of 0.767 (95% CI: 0.716-0.818) in the training set and 0.729 (95% CI: 0.648-0.810) in the validation set.</p><p><strong>Conclusion: </strong>A machine learning-based model combining ultrasound radiomics and clinical variables shows promise for the preoperative risk stratification of CCLNM in patients with PTMC. However, further validation in larger, more diverse cohorts is needed before clinical application.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"228"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a machine learning model for central compartmental lymph node metastasis in solitary papillary thyroid microcarcinoma via ultrasound imaging features and clinical parameters.\",\"authors\":\"Haiyang Han, Heng Sun, Chang Zhou, Li Wei, Liang Xu, Dian Shen, Wenshu Hu\",\"doi\":\"10.1186/s12880-025-01757-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treatment decisions prior to microwave ablation of thyroid nodules. The objective of this study was to develop a predictive model for CCLNM in patients with solitary PTMC on the basis of a combination of ultrasound radiomics and clinical parameters.</p><p><strong>Methods: </strong>We retrospectively analyzed data from 480 patients diagnosed with PTMC via postoperative pathological examination. The patients were randomly divided into a training set (n = 336) and a validation set (n = 144) at a 7:3 ratio. The cohort was stratified into a metastasis group and a nonmetastasis group on the basis of postoperative pathological results. Ultrasound radiomic features were extracted from routine thyroid ultrasound images, and multiple feature selection methods were applied to construct radiomic models for each group. Independent risk factors, along with radiomics features identified through multivariate logistic regression analysis, were subsequently refined through additional feature selection techniques to develop combined predictive models. The performance of each model was then evaluated.</p><p><strong>Results: </strong>The combined model, which incorporates age, the presence of Hashimoto's thyroiditis (HT), and radiomics features selected via an optimal feature selection approach (percentage-based), exhibited superior predictive efficacy, with AUC values of 0.767 (95% CI: 0.716-0.818) in the training set and 0.729 (95% CI: 0.648-0.810) in the validation set.</p><p><strong>Conclusion: </strong>A machine learning-based model combining ultrasound radiomics and clinical variables shows promise for the preoperative risk stratification of CCLNM in patients with PTMC. However, further validation in larger, more diverse cohorts is needed before clinical application.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"228\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01757-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01757-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Development and validation of a machine learning model for central compartmental lymph node metastasis in solitary papillary thyroid microcarcinoma via ultrasound imaging features and clinical parameters.
Background: Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treatment decisions prior to microwave ablation of thyroid nodules. The objective of this study was to develop a predictive model for CCLNM in patients with solitary PTMC on the basis of a combination of ultrasound radiomics and clinical parameters.
Methods: We retrospectively analyzed data from 480 patients diagnosed with PTMC via postoperative pathological examination. The patients were randomly divided into a training set (n = 336) and a validation set (n = 144) at a 7:3 ratio. The cohort was stratified into a metastasis group and a nonmetastasis group on the basis of postoperative pathological results. Ultrasound radiomic features were extracted from routine thyroid ultrasound images, and multiple feature selection methods were applied to construct radiomic models for each group. Independent risk factors, along with radiomics features identified through multivariate logistic regression analysis, were subsequently refined through additional feature selection techniques to develop combined predictive models. The performance of each model was then evaluated.
Results: The combined model, which incorporates age, the presence of Hashimoto's thyroiditis (HT), and radiomics features selected via an optimal feature selection approach (percentage-based), exhibited superior predictive efficacy, with AUC values of 0.767 (95% CI: 0.716-0.818) in the training set and 0.729 (95% CI: 0.648-0.810) in the validation set.
Conclusion: A machine learning-based model combining ultrasound radiomics and clinical variables shows promise for the preoperative risk stratification of CCLNM in patients with PTMC. However, further validation in larger, more diverse cohorts is needed before clinical application.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.