使用手部x光片进行性别估计的深度学习:CNN模型的比较评估。

IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hilal Er Ulubaba, İpek Atik, Rukiye Çiftçi, Özgür Eken, Monira I Aldhahi
{"title":"使用手部x光片进行性别估计的深度学习:CNN模型的比较评估。","authors":"Hilal Er Ulubaba, İpek Atik, Rukiye Çiftçi, Özgür Eken, Monira I Aldhahi","doi":"10.1186/s12880-025-01809-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate gender estimation plays a crucial role in forensic identification, especially in mass disasters or cases involving fragmented or decomposed remains where traditional skeletal landmarks are unavailable. This study aimed to develop a deep learning-based model for gender classification using hand radiographs, offering a rapid and objective alternative to conventional methods.</p><p><strong>Methods: </strong>We analyzed 470 left-hand X-ray images from adults aged 18 to 65 years using four convolutional neural network (CNN) architectures: ResNet-18, ResNet-50, InceptionV3, and EfficientNet-B0. Following image preprocessing and data augmentation, models were trained and validated using standard classification metrics: accuracy, precision, recall, and F1 score. Data augmentation included random rotation, horizontal flipping, and brightness adjustments to enhance model generalization.</p><p><strong>Results: </strong>Among the tested models, ResNet-50 achieved the highest classification accuracy (93.2%) with precision of 92.4%, recall of 93.3%, and F1 score of 92.5%. While other models demonstrated acceptable performance, ResNet-50 consistently outperformed them across all metrics. These findings suggest CNNs can reliably extract sexually dimorphic features from hand radiographs.</p><p><strong>Conclusions: </strong>Deep learning approaches, particularly ResNet-50, provide a robust, scalable, and efficient solution for gender prediction from hand X-ray images. This method may serve as a valuable tool in forensic scenarios where speed and reliability are critical. Future research should validate these findings across diverse populations and incorporate explainable AI techniques to enhance interpretability.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"260"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219916/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for gender estimation using hand radiographs: a comparative evaluation of CNN models.\",\"authors\":\"Hilal Er Ulubaba, İpek Atik, Rukiye Çiftçi, Özgür Eken, Monira I Aldhahi\",\"doi\":\"10.1186/s12880-025-01809-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate gender estimation plays a crucial role in forensic identification, especially in mass disasters or cases involving fragmented or decomposed remains where traditional skeletal landmarks are unavailable. This study aimed to develop a deep learning-based model for gender classification using hand radiographs, offering a rapid and objective alternative to conventional methods.</p><p><strong>Methods: </strong>We analyzed 470 left-hand X-ray images from adults aged 18 to 65 years using four convolutional neural network (CNN) architectures: ResNet-18, ResNet-50, InceptionV3, and EfficientNet-B0. Following image preprocessing and data augmentation, models were trained and validated using standard classification metrics: accuracy, precision, recall, and F1 score. Data augmentation included random rotation, horizontal flipping, and brightness adjustments to enhance model generalization.</p><p><strong>Results: </strong>Among the tested models, ResNet-50 achieved the highest classification accuracy (93.2%) with precision of 92.4%, recall of 93.3%, and F1 score of 92.5%. While other models demonstrated acceptable performance, ResNet-50 consistently outperformed them across all metrics. These findings suggest CNNs can reliably extract sexually dimorphic features from hand radiographs.</p><p><strong>Conclusions: </strong>Deep learning approaches, particularly ResNet-50, provide a robust, scalable, and efficient solution for gender prediction from hand X-ray images. This method may serve as a valuable tool in forensic scenarios where speed and reliability are critical. Future research should validate these findings across diverse populations and incorporate explainable AI techniques to enhance interpretability.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"260\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01809-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01809-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:准确的性别估计在法医鉴定中起着至关重要的作用,特别是在大规模灾害或涉及破碎或腐烂遗体的案件中,传统的骨骼标志是不可用的。本研究旨在开发一种基于深度学习的手部x光片性别分类模型,为传统方法提供一种快速客观的替代方法。方法:我们使用四种卷积神经网络(CNN)架构:ResNet-18、ResNet-50、InceptionV3和EfficientNet-B0分析了470张18至65岁成年人的左手x射线图像。在图像预处理和数据增强之后,使用标准分类指标:准确性、精密度、召回率和F1分数对模型进行训练和验证。数据增强包括随机旋转、水平翻转和亮度调整,以增强模型的泛化。结果:在测试的模型中,ResNet-50的分类准确率最高(93.2%),准确率为92.4%,召回率为93.3%,F1得分为92.5%。当其他模型表现出可接受的性能时,ResNet-50在所有指标上都始终优于它们。这些发现表明cnn可以可靠地从手部x光片中提取两性二态特征。结论:深度学习方法,特别是ResNet-50,为手部x射线图像的性别预测提供了一个强大、可扩展和有效的解决方案。在速度和可靠性至关重要的法医场景中,这种方法可以作为一种有价值的工具。未来的研究应该在不同的人群中验证这些发现,并结合可解释的人工智能技术来提高可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for gender estimation using hand radiographs: a comparative evaluation of CNN models.

Background: Accurate gender estimation plays a crucial role in forensic identification, especially in mass disasters or cases involving fragmented or decomposed remains where traditional skeletal landmarks are unavailable. This study aimed to develop a deep learning-based model for gender classification using hand radiographs, offering a rapid and objective alternative to conventional methods.

Methods: We analyzed 470 left-hand X-ray images from adults aged 18 to 65 years using four convolutional neural network (CNN) architectures: ResNet-18, ResNet-50, InceptionV3, and EfficientNet-B0. Following image preprocessing and data augmentation, models were trained and validated using standard classification metrics: accuracy, precision, recall, and F1 score. Data augmentation included random rotation, horizontal flipping, and brightness adjustments to enhance model generalization.

Results: Among the tested models, ResNet-50 achieved the highest classification accuracy (93.2%) with precision of 92.4%, recall of 93.3%, and F1 score of 92.5%. While other models demonstrated acceptable performance, ResNet-50 consistently outperformed them across all metrics. These findings suggest CNNs can reliably extract sexually dimorphic features from hand radiographs.

Conclusions: Deep learning approaches, particularly ResNet-50, provide a robust, scalable, and efficient solution for gender prediction from hand X-ray images. This method may serve as a valuable tool in forensic scenarios where speed and reliability are critical. Future research should validate these findings across diverse populations and incorporate explainable AI techniques to enhance interpretability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信