{"title":"基于深度学习的放射术后脑动静脉畸形辐射诱导变化自动分割。","authors":"Hsing-Hao Ho, Huai-Che Yang, Wen-Xiang Yang, Cheng-Chia Lee, Hsiu-Mei Wu, I-Chun Lai, Ching-Jen Chen, Syu-Jyun Peng","doi":"10.1186/s12880-025-01796-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the widespread use of stereotactic radiosurgery (SRS) to treat cerebral arteriovenous malformations (AVMs), this procedure can lead to radiation-induced changes (RICs) in the surrounding brain tissue. Volumetric assessment of RICs is crucial for therapy planning and monitoring. RICs that appear as hyper-dense areas in magnetic resonance T2-weighted (T2w) images are clearly identifiable; however, physicians lack tools for the segmentation and quantification of these areas. This paper presents an algorithm to calculate the volume of RICs in patients with AVMs following SRS. The algorithm could be used to predict the course of RICs and facilitate clinical management.</p><p><strong>Methods: </strong>We trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) as an alternative to manual pre-processing in designating regions of interest. We also applied transfer learning to the DeepMedic deep learning model to facilitate the automatic segmentation and quantification of AVM edema regions in T2w images.</p><p><strong>Results: </strong>The resulting quantitative findings were used to explore the effects of SRS treatment among 28 patients with unruptured AVMs based on 139 regularly tracked T2w scans. The actual range of RICs in the T2w images was labeled manually by a clinical radiologist to serve as the gold standard in supervised learning. The trained model was tasked with segmenting the test set for comparison with the manual segmentation results. The average Dice similarity coefficient in these comparisons was 71.8%.</p><p><strong>Conclusions: </strong>The proposed segmentation algorithm achieved results on par with conventional manual calculations in determining the volume of RICs, which were shown to peak at the end of the first year after SRS and then gradually decrease. These findings have the potential to enhance clinical decision-making.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"218"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for automated segmentation of radiation-induced changes in cerebral arteriovenous malformations following radiosurgery.\",\"authors\":\"Hsing-Hao Ho, Huai-Che Yang, Wen-Xiang Yang, Cheng-Chia Lee, Hsiu-Mei Wu, I-Chun Lai, Ching-Jen Chen, Syu-Jyun Peng\",\"doi\":\"10.1186/s12880-025-01796-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the widespread use of stereotactic radiosurgery (SRS) to treat cerebral arteriovenous malformations (AVMs), this procedure can lead to radiation-induced changes (RICs) in the surrounding brain tissue. Volumetric assessment of RICs is crucial for therapy planning and monitoring. RICs that appear as hyper-dense areas in magnetic resonance T2-weighted (T2w) images are clearly identifiable; however, physicians lack tools for the segmentation and quantification of these areas. This paper presents an algorithm to calculate the volume of RICs in patients with AVMs following SRS. The algorithm could be used to predict the course of RICs and facilitate clinical management.</p><p><strong>Methods: </strong>We trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) as an alternative to manual pre-processing in designating regions of interest. We also applied transfer learning to the DeepMedic deep learning model to facilitate the automatic segmentation and quantification of AVM edema regions in T2w images.</p><p><strong>Results: </strong>The resulting quantitative findings were used to explore the effects of SRS treatment among 28 patients with unruptured AVMs based on 139 regularly tracked T2w scans. The actual range of RICs in the T2w images was labeled manually by a clinical radiologist to serve as the gold standard in supervised learning. The trained model was tasked with segmenting the test set for comparison with the manual segmentation results. The average Dice similarity coefficient in these comparisons was 71.8%.</p><p><strong>Conclusions: </strong>The proposed segmentation algorithm achieved results on par with conventional manual calculations in determining the volume of RICs, which were shown to peak at the end of the first year after SRS and then gradually decrease. These findings have the potential to enhance clinical decision-making.</p><p><strong>Trial registration: </strong>Not applicable.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"218\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01796-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01796-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep learning for automated segmentation of radiation-induced changes in cerebral arteriovenous malformations following radiosurgery.
Background: Despite the widespread use of stereotactic radiosurgery (SRS) to treat cerebral arteriovenous malformations (AVMs), this procedure can lead to radiation-induced changes (RICs) in the surrounding brain tissue. Volumetric assessment of RICs is crucial for therapy planning and monitoring. RICs that appear as hyper-dense areas in magnetic resonance T2-weighted (T2w) images are clearly identifiable; however, physicians lack tools for the segmentation and quantification of these areas. This paper presents an algorithm to calculate the volume of RICs in patients with AVMs following SRS. The algorithm could be used to predict the course of RICs and facilitate clinical management.
Methods: We trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) as an alternative to manual pre-processing in designating regions of interest. We also applied transfer learning to the DeepMedic deep learning model to facilitate the automatic segmentation and quantification of AVM edema regions in T2w images.
Results: The resulting quantitative findings were used to explore the effects of SRS treatment among 28 patients with unruptured AVMs based on 139 regularly tracked T2w scans. The actual range of RICs in the T2w images was labeled manually by a clinical radiologist to serve as the gold standard in supervised learning. The trained model was tasked with segmenting the test set for comparison with the manual segmentation results. The average Dice similarity coefficient in these comparisons was 71.8%.
Conclusions: The proposed segmentation algorithm achieved results on par with conventional manual calculations in determining the volume of RICs, which were shown to peak at the end of the first year after SRS and then gradually decrease. These findings have the potential to enhance clinical decision-making.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.