基于多模态深度学习的脑膜瘤一致性预测放射组学:在多中心研究中整合T1和T2 MRI。

IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Huanjie Lin, Yubiao Yue, Li Xie, Bingbing Chen, Weifeng Li, Fan Yang, Qinrong Zhang, Huai Chen
{"title":"基于多模态深度学习的脑膜瘤一致性预测放射组学:在多中心研究中整合T1和T2 MRI。","authors":"Huanjie Lin, Yubiao Yue, Li Xie, Bingbing Chen, Weifeng Li, Fan Yang, Qinrong Zhang, Huai Chen","doi":"10.1186/s12880-025-01787-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning and radiomics could enhance the predictive accuracy of meningioma consistency.</p><p><strong>Methods: </strong>A retrospective study analyzed 204 meningioma patients from two centers: the Second Affiliated Hospital of Guangzhou Medical University and the Southern Theater Command Hospital PLA. Three models-a radiomics model (Rad_Model), a deep learning model (DL_Model), and a combined model (DLR_Model)-were developed. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, and precision.</p><p><strong>Results: </strong>The DLR_Model outperformed other models across all cohorts. In the training set, it achieved AUC 0.957, accuracy of 0.908, and precision of 0.965. In the external test cohort, it maintained superior performance with an AUC of 0.854, accuracy of 0.778, and precision of 0.893, surpassing both the Rad_Model (AUC = 0.768) and DL_Model (AUC = 0.720). Combining radiomics and deep learning features improved predictive performance and robustness.</p><p><strong>Conclusion: </strong>Our study introduced and evaluated a deep learning radiomics model (DLR-Model) to accurately predict the consistency of meningiomas, which has the potential to improve preoperative assessments and surgical planning.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"216"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal deep learning-based radiomics for meningioma consistency prediction: integrating T1 and T2 MRI in a multi-center study.\",\"authors\":\"Huanjie Lin, Yubiao Yue, Li Xie, Bingbing Chen, Weifeng Li, Fan Yang, Qinrong Zhang, Huai Chen\",\"doi\":\"10.1186/s12880-025-01787-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning and radiomics could enhance the predictive accuracy of meningioma consistency.</p><p><strong>Methods: </strong>A retrospective study analyzed 204 meningioma patients from two centers: the Second Affiliated Hospital of Guangzhou Medical University and the Southern Theater Command Hospital PLA. Three models-a radiomics model (Rad_Model), a deep learning model (DL_Model), and a combined model (DLR_Model)-were developed. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, and precision.</p><p><strong>Results: </strong>The DLR_Model outperformed other models across all cohorts. In the training set, it achieved AUC 0.957, accuracy of 0.908, and precision of 0.965. In the external test cohort, it maintained superior performance with an AUC of 0.854, accuracy of 0.778, and precision of 0.893, surpassing both the Rad_Model (AUC = 0.768) and DL_Model (AUC = 0.720). Combining radiomics and deep learning features improved predictive performance and robustness.</p><p><strong>Conclusion: </strong>Our study introduced and evaluated a deep learning radiomics model (DLR-Model) to accurately predict the consistency of meningiomas, which has the potential to improve preoperative assessments and surgical planning.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"216\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01787-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01787-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑膜瘤一致性严重影响手术计划,因为软瘤比硬瘤更容易切除。目前使用MRI对肿瘤一致性的评估是主观的,缺乏定量的准确性。将深度学习与放射组学相结合,可提高脑膜瘤一致性预测的准确性。方法:对广州医科大学第二附属医院和中国人民解放军南方战区医院收治的204例脑膜瘤患者进行回顾性分析。开发了三个模型-放射组学模型(Rad_Model),深度学习模型(DL_Model)和组合模型(DLR_Model)。使用AUC、准确性、敏感性、特异性和精密度评估模型性能。结果:DLR_Model在所有队列中都优于其他模型。在训练集中,AUC为0.957,准确率为0.908,精密度为0.965。在外部测试队列中,其AUC为0.854,准确度为0.778,精密度为0.893,优于Rad_Model (AUC = 0.768)和DL_Model (AUC = 0.720)。结合放射组学和深度学习的特点,提高了预测性能和鲁棒性。结论:本研究引入并评估了一种能够准确预测脑膜瘤一致性的深度学习放射组学模型(DLR-Model),该模型具有改善术前评估和手术计划的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal deep learning-based radiomics for meningioma consistency prediction: integrating T1 and T2 MRI in a multi-center study.

Background: Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning and radiomics could enhance the predictive accuracy of meningioma consistency.

Methods: A retrospective study analyzed 204 meningioma patients from two centers: the Second Affiliated Hospital of Guangzhou Medical University and the Southern Theater Command Hospital PLA. Three models-a radiomics model (Rad_Model), a deep learning model (DL_Model), and a combined model (DLR_Model)-were developed. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, and precision.

Results: The DLR_Model outperformed other models across all cohorts. In the training set, it achieved AUC 0.957, accuracy of 0.908, and precision of 0.965. In the external test cohort, it maintained superior performance with an AUC of 0.854, accuracy of 0.778, and precision of 0.893, surpassing both the Rad_Model (AUC = 0.768) and DL_Model (AUC = 0.720). Combining radiomics and deep learning features improved predictive performance and robustness.

Conclusion: Our study introduced and evaluated a deep learning radiomics model (DLR-Model) to accurately predict the consistency of meningiomas, which has the potential to improve preoperative assessments and surgical planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信