S Shahsavandi, H Nasr Isfahani, A A Hariri, Z Sharifnia, S Soleimani, A Moradi
{"title":"红花衍生的阳离子脂质纳米颗粒:对SARS-CoV-2 MRNA转录物递送的潜在影响","authors":"S Shahsavandi, H Nasr Isfahani, A A Hariri, Z Sharifnia, S Soleimani, A Moradi","doi":"10.32592/ARI.2024.79.6.1217","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has significantly highlighted the successful application of lipid nanoparticles (LNPs) as an advanced platform for mRNA vaccine delivery. Ionizable lipid is the main component for complexing the mRNA in LNP formulation and <i>in vivo</i> delivery. In the first step of this study, we used the native safflower oil seed to prepare dilinoleyl alcohol. Then the cationic lipid DLin-MC3-DMA (MC3) was synthesized by mixing the alcohol with dimethylamino butyric acid. Safflower-derived MC3 was applied to formulate an LNP vector with standard composition. The efficiency of the synthetic cationic lipid was evaluated for delivering an mRNA-based vaccine encoding the receptor-binding domain (RBD) of SARS-CoV-2. The produced mRNA-LNP vaccine candidate was evaluated in size, morphology, mRNA encapsulation efficiency, apparent pKa, and stability for nucleic acid delivery. Cellular uptake was determined by measuring the percentage of GFP expression, and cytotoxicity was assayed using MTT. The MC3 formation was confirmed by the NMR spectra and used as a cationic lipid in LNP formulation. The obtained LNPs had positively charged and appropriate particle sizes (~80 nm) to confer proper encapsulation efficiency for mRNA delivery and stability. The LNPs were shown to be effective in the transfection of mRNA transcripts into HEK293T cells. A high level (72.34%) of cellular uptake was determined by measuring the percentage of GFP expression. The cytotoxicity assay using MTT showed that both LNP and mRNA-LNP were non-toxic to cells. These data demonstrate the potential of the proposed safflower-derived cationic lipid in the formulation of LNP. The carrier provides a promising platform for the efficient delivery of mRNA <i>in vitro</i>. Further evaluations of its potential for <i>in vivo</i> delivery are needed.</p>","PeriodicalId":8311,"journal":{"name":"Archives of Razi Institute","volume":"79 6","pages":"1217-1226"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Safflower-Derived Cationic Lipid Nanoparticles: Potential Impact on the Delivery of SARS-CoV-2 MRNA Transcripts.\",\"authors\":\"S Shahsavandi, H Nasr Isfahani, A A Hariri, Z Sharifnia, S Soleimani, A Moradi\",\"doi\":\"10.32592/ARI.2024.79.6.1217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has significantly highlighted the successful application of lipid nanoparticles (LNPs) as an advanced platform for mRNA vaccine delivery. Ionizable lipid is the main component for complexing the mRNA in LNP formulation and <i>in vivo</i> delivery. In the first step of this study, we used the native safflower oil seed to prepare dilinoleyl alcohol. Then the cationic lipid DLin-MC3-DMA (MC3) was synthesized by mixing the alcohol with dimethylamino butyric acid. Safflower-derived MC3 was applied to formulate an LNP vector with standard composition. The efficiency of the synthetic cationic lipid was evaluated for delivering an mRNA-based vaccine encoding the receptor-binding domain (RBD) of SARS-CoV-2. The produced mRNA-LNP vaccine candidate was evaluated in size, morphology, mRNA encapsulation efficiency, apparent pKa, and stability for nucleic acid delivery. Cellular uptake was determined by measuring the percentage of GFP expression, and cytotoxicity was assayed using MTT. The MC3 formation was confirmed by the NMR spectra and used as a cationic lipid in LNP formulation. The obtained LNPs had positively charged and appropriate particle sizes (~80 nm) to confer proper encapsulation efficiency for mRNA delivery and stability. The LNPs were shown to be effective in the transfection of mRNA transcripts into HEK293T cells. A high level (72.34%) of cellular uptake was determined by measuring the percentage of GFP expression. The cytotoxicity assay using MTT showed that both LNP and mRNA-LNP were non-toxic to cells. These data demonstrate the potential of the proposed safflower-derived cationic lipid in the formulation of LNP. The carrier provides a promising platform for the efficient delivery of mRNA <i>in vitro</i>. Further evaluations of its potential for <i>in vivo</i> delivery are needed.</p>\",\"PeriodicalId\":8311,\"journal\":{\"name\":\"Archives of Razi Institute\",\"volume\":\"79 6\",\"pages\":\"1217-1226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Razi Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32592/ARI.2024.79.6.1217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Razi Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32592/ARI.2024.79.6.1217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Veterinary","Score":null,"Total":0}
Safflower-Derived Cationic Lipid Nanoparticles: Potential Impact on the Delivery of SARS-CoV-2 MRNA Transcripts.
The COVID-19 pandemic has significantly highlighted the successful application of lipid nanoparticles (LNPs) as an advanced platform for mRNA vaccine delivery. Ionizable lipid is the main component for complexing the mRNA in LNP formulation and in vivo delivery. In the first step of this study, we used the native safflower oil seed to prepare dilinoleyl alcohol. Then the cationic lipid DLin-MC3-DMA (MC3) was synthesized by mixing the alcohol with dimethylamino butyric acid. Safflower-derived MC3 was applied to formulate an LNP vector with standard composition. The efficiency of the synthetic cationic lipid was evaluated for delivering an mRNA-based vaccine encoding the receptor-binding domain (RBD) of SARS-CoV-2. The produced mRNA-LNP vaccine candidate was evaluated in size, morphology, mRNA encapsulation efficiency, apparent pKa, and stability for nucleic acid delivery. Cellular uptake was determined by measuring the percentage of GFP expression, and cytotoxicity was assayed using MTT. The MC3 formation was confirmed by the NMR spectra and used as a cationic lipid in LNP formulation. The obtained LNPs had positively charged and appropriate particle sizes (~80 nm) to confer proper encapsulation efficiency for mRNA delivery and stability. The LNPs were shown to be effective in the transfection of mRNA transcripts into HEK293T cells. A high level (72.34%) of cellular uptake was determined by measuring the percentage of GFP expression. The cytotoxicity assay using MTT showed that both LNP and mRNA-LNP were non-toxic to cells. These data demonstrate the potential of the proposed safflower-derived cationic lipid in the formulation of LNP. The carrier provides a promising platform for the efficient delivery of mRNA in vitro. Further evaluations of its potential for in vivo delivery are needed.