TransferTWAS:跨组织转录组关联研究的迁移学习框架。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Daoyuan Lai, Han Wang, Tian Gu, Siqi Wu, Dajiang J Liu, Pak Chung Sham, Yan Dora Zhang
{"title":"TransferTWAS:跨组织转录组关联研究的迁移学习框架。","authors":"Daoyuan Lai, Han Wang, Tian Gu, Siqi Wu, Dajiang J Liu, Pak Chung Sham, Yan Dora Zhang","doi":"10.1016/j.ajhg.2025.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWASs) utilize gene-expression data to explore the genetic basis of complex traits. A key challenge in TWASs is developing robust imputation models for tissues with limited sample sizes. This paper introduces transfer learning-assisted TWAS (TransferTWAS), a framework that adaptively transfers information from multiple tissues to improve gene-expression prediction in the target tissue. TransferTWAS employs a data-driven strategy that assigns higher weights to genetically similar external tissues. It outperforms other multi-tissue TWAS methods, such as the Unified Test for Molecular Signatures (UTMOST), which neglects tissue similarity, and Joint-Tissue Imputation (JTI), which relies on functional annotations to represent tissue similarity. Simulation studies demonstrate that TransferTWAS achieves the highest imputation accuracy, and analyses using the ROS/MAP and GEUVADIS datasets show a substantial power gain while maintaining control over type-I errors. Furthermore, analysis of the low-density lipoprotein cholesterol GWAS dataset and other complex traits demonstrates that TransferTWAS effectively identifies more associations compared with existing methods.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransferTWAS: A transfer learning framework for cross-tissue transcriptome-wide association study.\",\"authors\":\"Daoyuan Lai, Han Wang, Tian Gu, Siqi Wu, Dajiang J Liu, Pak Chung Sham, Yan Dora Zhang\",\"doi\":\"10.1016/j.ajhg.2025.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcriptome-wide association studies (TWASs) utilize gene-expression data to explore the genetic basis of complex traits. A key challenge in TWASs is developing robust imputation models for tissues with limited sample sizes. This paper introduces transfer learning-assisted TWAS (TransferTWAS), a framework that adaptively transfers information from multiple tissues to improve gene-expression prediction in the target tissue. TransferTWAS employs a data-driven strategy that assigns higher weights to genetically similar external tissues. It outperforms other multi-tissue TWAS methods, such as the Unified Test for Molecular Signatures (UTMOST), which neglects tissue similarity, and Joint-Tissue Imputation (JTI), which relies on functional annotations to represent tissue similarity. Simulation studies demonstrate that TransferTWAS achieves the highest imputation accuracy, and analyses using the ROS/MAP and GEUVADIS datasets show a substantial power gain while maintaining control over type-I errors. Furthermore, analysis of the low-density lipoprotein cholesterol GWAS dataset and other complex traits demonstrates that TransferTWAS effectively identifies more associations compared with existing methods.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.06.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.06.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

全转录组关联研究(TWASs)利用基因表达数据来探索复杂性状的遗传基础。TWASs的一个关键挑战是为有限样本量的组织开发健壮的植入模型。本文介绍了迁移学习辅助TWAS (transfer - learning-assisted TWAS, TransferTWAS),这是一种自适应地从多个组织转移信息以提高目标组织中基因表达预测的框架。TransferTWAS采用数据驱动策略,为基因相似的外部组织分配更高的权重。它优于其他多组织TWAS方法,如忽略组织相似性的分子特征统一测试(most)和依赖功能注释来表示组织相似性的关节-组织Imputation (JTI)。仿真研究表明,TransferTWAS实现了最高的输入精度,使用ROS/MAP和GEUVADIS数据集的分析显示,在保持对i型误差控制的同时,功率增益显著。此外,对低密度脂蛋白胆固醇GWAS数据集和其他复杂性状的分析表明,与现有方法相比,TransferTWAS有效地识别了更多的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransferTWAS: A transfer learning framework for cross-tissue transcriptome-wide association study.

Transcriptome-wide association studies (TWASs) utilize gene-expression data to explore the genetic basis of complex traits. A key challenge in TWASs is developing robust imputation models for tissues with limited sample sizes. This paper introduces transfer learning-assisted TWAS (TransferTWAS), a framework that adaptively transfers information from multiple tissues to improve gene-expression prediction in the target tissue. TransferTWAS employs a data-driven strategy that assigns higher weights to genetically similar external tissues. It outperforms other multi-tissue TWAS methods, such as the Unified Test for Molecular Signatures (UTMOST), which neglects tissue similarity, and Joint-Tissue Imputation (JTI), which relies on functional annotations to represent tissue similarity. Simulation studies demonstrate that TransferTWAS achieves the highest imputation accuracy, and analyses using the ROS/MAP and GEUVADIS datasets show a substantial power gain while maintaining control over type-I errors. Furthermore, analysis of the low-density lipoprotein cholesterol GWAS dataset and other complex traits demonstrates that TransferTWAS effectively identifies more associations compared with existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信