{"title":"通过CRISPR/ cas9介导的基因组编辑生成富亮氨酸重复激酶2 (LRRK2)敲除神经母细胞瘤细胞SH-SY5Y","authors":"Hui-Lan Jong, Kit-San Yuen, Dong-Yan Jin, Susan Ling Ling Hoe, Aini Ideris, Chee-Hong Tan, Sau-Kuen Lam, Yang-Mooi Lim, Soon-Keng Cheong","doi":"10.1007/s10528-025-11174-4","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine-rich repeat kinase 2 (LRRK2) is associated with Parkinson's disease, despite its low expression in the brain. Pathogenic mutations in LRRK2 enhance kinase activity and contribute to the disease's pathogenesis. Neuroblastoma SH-SY5Y cells, which also exhibit low LRRK2 expression, are extensively used as a model for Parkinson's disease. While less prominent, low-expression genes can play crucial roles in cellular processes, development, and disease. Knocking out such genes poses specific challenges, including difficulties in detection, incomplete knockout, and compensatory mechanisms that can obscure phenotypic changes. This study develops a strategy to knockout low-expression LRRK2 in SH-SY5Y cells effectively. Our approach employs a double-cut and multiple guide RNAs strategy, optimized electroporation parameters to enhance CRISPR/Cas9 plasmid delivery, refined clonal expansion technique, and a sensitive protein detection protocol. We successfully generate LRRK2 knockout SH-SY5Y cells using CRISPR/Cas9, with the knockout efficiency validated by PCR analysis, sequencing, and Western blot analysis.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Leucine-Rich Repeat Kinase 2 (LRRK2) Knockout Neuroblastoma Cells SH-SY5Y by CRISPR/Cas9-Mediated Genome Editing.\",\"authors\":\"Hui-Lan Jong, Kit-San Yuen, Dong-Yan Jin, Susan Ling Ling Hoe, Aini Ideris, Chee-Hong Tan, Sau-Kuen Lam, Yang-Mooi Lim, Soon-Keng Cheong\",\"doi\":\"10.1007/s10528-025-11174-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leucine-rich repeat kinase 2 (LRRK2) is associated with Parkinson's disease, despite its low expression in the brain. Pathogenic mutations in LRRK2 enhance kinase activity and contribute to the disease's pathogenesis. Neuroblastoma SH-SY5Y cells, which also exhibit low LRRK2 expression, are extensively used as a model for Parkinson's disease. While less prominent, low-expression genes can play crucial roles in cellular processes, development, and disease. Knocking out such genes poses specific challenges, including difficulties in detection, incomplete knockout, and compensatory mechanisms that can obscure phenotypic changes. This study develops a strategy to knockout low-expression LRRK2 in SH-SY5Y cells effectively. Our approach employs a double-cut and multiple guide RNAs strategy, optimized electroporation parameters to enhance CRISPR/Cas9 plasmid delivery, refined clonal expansion technique, and a sensitive protein detection protocol. We successfully generate LRRK2 knockout SH-SY5Y cells using CRISPR/Cas9, with the knockout efficiency validated by PCR analysis, sequencing, and Western blot analysis.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-025-11174-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11174-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Generation of Leucine-Rich Repeat Kinase 2 (LRRK2) Knockout Neuroblastoma Cells SH-SY5Y by CRISPR/Cas9-Mediated Genome Editing.
Leucine-rich repeat kinase 2 (LRRK2) is associated with Parkinson's disease, despite its low expression in the brain. Pathogenic mutations in LRRK2 enhance kinase activity and contribute to the disease's pathogenesis. Neuroblastoma SH-SY5Y cells, which also exhibit low LRRK2 expression, are extensively used as a model for Parkinson's disease. While less prominent, low-expression genes can play crucial roles in cellular processes, development, and disease. Knocking out such genes poses specific challenges, including difficulties in detection, incomplete knockout, and compensatory mechanisms that can obscure phenotypic changes. This study develops a strategy to knockout low-expression LRRK2 in SH-SY5Y cells effectively. Our approach employs a double-cut and multiple guide RNAs strategy, optimized electroporation parameters to enhance CRISPR/Cas9 plasmid delivery, refined clonal expansion technique, and a sensitive protein detection protocol. We successfully generate LRRK2 knockout SH-SY5Y cells using CRISPR/Cas9, with the knockout efficiency validated by PCR analysis, sequencing, and Western blot analysis.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.