碱功能化甘蔗渣生物炭对罗丹明B吸收的优化与预测:基于Krill Herd算法的人工神经网络建模方法。

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Neelaambhigai Mayilswamy, Balasubramanian Kandasubramanian, Tushar Warjurkar, Satkirti Chame, Saleega Shirin
{"title":"碱功能化甘蔗渣生物炭对罗丹明B吸收的优化与预测:基于Krill Herd算法的人工神经网络建模方法。","authors":"Neelaambhigai Mayilswamy, Balasubramanian Kandasubramanian, Tushar Warjurkar, Satkirti Chame, Saleega Shirin","doi":"10.1007/s11356-025-36680-1","DOIUrl":null,"url":null,"abstract":"<p><p>The present research work accentuates the utilization of sodium hydroxide-functionalized sugarcane bagasse biochar (NaOH-SBB) for the decolorization of Rhodamine B (RhB) dye from effluents, for fostering the UN Sustainable Development Goals (SDGs) of pure water and robust health. The physicochemical characteristics of the as-prepared biochar were examined using advanced characterization techniques, and a maximum mono-layered Langmuir adsorption capacity (q<sub>max</sub>) of 4.8309 mg/g was attained at adsorbate concentrations of 15 ppm. The dye decolorization phenomenon using NaOH-SBB adsorbent was modelled using the Krill Herd algorithm-optimized via the Levenberg Marquardt Backpropagation (LM) algorithm through Artificial Neural Network (ANN) modelling, for optimizing and predicting the dye adsorption capacity values. The configured Artificial Neural Network (ANN) model demonstrated a strong predictive performance, reflected by a high coefficient of correlation (R = 0.9531), and determination coefficient (R<sup>2</sup> = 0.9726), along with low error metrics (mean square error: 0.5669, mean absolute error: 0.3884, root mean square error: 0.7542). These results indicated a strong correlation between the empirical and ANN-prognosticated results, validating the effectiveness, and reliability of the developed model.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and prediction of Rhodamine B uptake onto alkali-functionalized sugarcane bagasse biochar: Krill Herd algorithm-based ANN modelling approach.\",\"authors\":\"Neelaambhigai Mayilswamy, Balasubramanian Kandasubramanian, Tushar Warjurkar, Satkirti Chame, Saleega Shirin\",\"doi\":\"10.1007/s11356-025-36680-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present research work accentuates the utilization of sodium hydroxide-functionalized sugarcane bagasse biochar (NaOH-SBB) for the decolorization of Rhodamine B (RhB) dye from effluents, for fostering the UN Sustainable Development Goals (SDGs) of pure water and robust health. The physicochemical characteristics of the as-prepared biochar were examined using advanced characterization techniques, and a maximum mono-layered Langmuir adsorption capacity (q<sub>max</sub>) of 4.8309 mg/g was attained at adsorbate concentrations of 15 ppm. The dye decolorization phenomenon using NaOH-SBB adsorbent was modelled using the Krill Herd algorithm-optimized via the Levenberg Marquardt Backpropagation (LM) algorithm through Artificial Neural Network (ANN) modelling, for optimizing and predicting the dye adsorption capacity values. The configured Artificial Neural Network (ANN) model demonstrated a strong predictive performance, reflected by a high coefficient of correlation (R = 0.9531), and determination coefficient (R<sup>2</sup> = 0.9726), along with low error metrics (mean square error: 0.5669, mean absolute error: 0.3884, root mean square error: 0.7542). These results indicated a strong correlation between the empirical and ANN-prognosticated results, validating the effectiveness, and reliability of the developed model.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-025-36680-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36680-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究工作重点是利用氢氧化钠功能化甘蔗渣生物炭(NaOH-SBB)对废水中的罗丹明B (RhB)染料进行脱色,以促进纯净水和健康的联合国可持续发展目标(sdg)。利用先进的表征技术对制备的生物炭的理化特性进行了表征,在吸附质浓度为15 ppm时,其最大单层Langmuir吸附量(qmax)为4.8309 mg/g。采用Krill Herd算法对NaOH-SBB吸附剂的染料脱色现象进行建模,并通过人工神经网络(ANN)建模优化Levenberg Marquardt反向传播(LM)算法,优化和预测染料吸附容量值。所配置的人工神经网络(ANN)模型具有较强的预测性能,相关系数(R = 0.9531)和决定系数(R2 = 0.9726)较高,误差指标较低(均方误差为0.5669,平均绝对误差为0.3884,均方根误差为0.7542)。这些结果表明,实证结果与人工神经网络预测结果之间存在很强的相关性,验证了所开发模型的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and prediction of Rhodamine B uptake onto alkali-functionalized sugarcane bagasse biochar: Krill Herd algorithm-based ANN modelling approach.

The present research work accentuates the utilization of sodium hydroxide-functionalized sugarcane bagasse biochar (NaOH-SBB) for the decolorization of Rhodamine B (RhB) dye from effluents, for fostering the UN Sustainable Development Goals (SDGs) of pure water and robust health. The physicochemical characteristics of the as-prepared biochar were examined using advanced characterization techniques, and a maximum mono-layered Langmuir adsorption capacity (qmax) of 4.8309 mg/g was attained at adsorbate concentrations of 15 ppm. The dye decolorization phenomenon using NaOH-SBB adsorbent was modelled using the Krill Herd algorithm-optimized via the Levenberg Marquardt Backpropagation (LM) algorithm through Artificial Neural Network (ANN) modelling, for optimizing and predicting the dye adsorption capacity values. The configured Artificial Neural Network (ANN) model demonstrated a strong predictive performance, reflected by a high coefficient of correlation (R = 0.9531), and determination coefficient (R2 = 0.9726), along with low error metrics (mean square error: 0.5669, mean absolute error: 0.3884, root mean square error: 0.7542). These results indicated a strong correlation between the empirical and ANN-prognosticated results, validating the effectiveness, and reliability of the developed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信