再锻造铁磁Fe@C阳极中的自旋协调锂扩散。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Myeong Seok Goh, Hyunsub Shin, Jaehun Lee, No-Kuk Park, Joonwoo Kim, Sang Woo Joo, Ki Hyeon Kim, Misook Kang
{"title":"再锻造铁磁Fe@C阳极中的自旋协调锂扩散。","authors":"Myeong Seok Goh,&nbsp;Hyunsub Shin,&nbsp;Jaehun Lee,&nbsp;No-Kuk Park,&nbsp;Joonwoo Kim,&nbsp;Sang Woo Joo,&nbsp;Ki Hyeon Kim,&nbsp;Misook Kang","doi":"10.1002/advs.202506133","DOIUrl":null,"url":null,"abstract":"<p>This reports a dual-functional approach in which Fe catalysts, initially employed for methane pyrolysis to generate COx-free hydrogen, are directly repurposed as anode materials following in situ carbon deposition. During methane splitting, catalytic decomposition of CH₄ at 900 °C forms onion-like graphitic carbon shells (≈280 layers) around Fe cores (≈50 nm), producing a structurally stable and electrically conductive Fe@C900 composite without post-treatment. This carbon-enriched catalyst demonstrates exceptional electrochemical behavior when transitioned into a battery context. Without any conductive additives, Fe@C900 delivers a reversible capacity of 380 mAh g⁻¹ with 98% retention over 1000 cycles at 1 C. Under a 5000 G magnetic field, spin alignment within the Fe cores triggers directional lithium-ion migration, enhancing rate performance by 150%. Multimodal characterization reveals accelerated lithium kinetics, stable SEI evolution, and deep lithiation behavior. DFT calculations further confirm strong lithium adsorption (−24.14 eV) and low insertion barriers (−22.85 eV), validating the spin-guided diffusion mechanism. This work introduces a new class of hydrogen-derived ferromagnetic anodes, where the byproduct of a clean hydrogen process is re-engineered into a high-rate, conductor-free lithium storage platform. By coupling hydrogen generation with energy storage through shared material intermediates, this strategy offers a scalable path to carbon-efficient, magnetically enhanced battery systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 36","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506133","citationCount":"0","resultStr":"{\"title\":\"Spin-Orchestrated Lithium Diffusion in Reforged Ferromagnetic Fe@C Anodes\",\"authors\":\"Myeong Seok Goh,&nbsp;Hyunsub Shin,&nbsp;Jaehun Lee,&nbsp;No-Kuk Park,&nbsp;Joonwoo Kim,&nbsp;Sang Woo Joo,&nbsp;Ki Hyeon Kim,&nbsp;Misook Kang\",\"doi\":\"10.1002/advs.202506133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This reports a dual-functional approach in which Fe catalysts, initially employed for methane pyrolysis to generate COx-free hydrogen, are directly repurposed as anode materials following in situ carbon deposition. During methane splitting, catalytic decomposition of CH₄ at 900 °C forms onion-like graphitic carbon shells (≈280 layers) around Fe cores (≈50 nm), producing a structurally stable and electrically conductive Fe@C900 composite without post-treatment. This carbon-enriched catalyst demonstrates exceptional electrochemical behavior when transitioned into a battery context. Without any conductive additives, Fe@C900 delivers a reversible capacity of 380 mAh g⁻¹ with 98% retention over 1000 cycles at 1 C. Under a 5000 G magnetic field, spin alignment within the Fe cores triggers directional lithium-ion migration, enhancing rate performance by 150%. Multimodal characterization reveals accelerated lithium kinetics, stable SEI evolution, and deep lithiation behavior. DFT calculations further confirm strong lithium adsorption (−24.14 eV) and low insertion barriers (−22.85 eV), validating the spin-guided diffusion mechanism. This work introduces a new class of hydrogen-derived ferromagnetic anodes, where the byproduct of a clean hydrogen process is re-engineered into a high-rate, conductor-free lithium storage platform. By coupling hydrogen generation with energy storage through shared material intermediates, this strategy offers a scalable path to carbon-efficient, magnetically enhanced battery systems.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 36\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506133\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506133\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506133","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种双功能方法,其中铁催化剂最初用于甲烷热解生成无cox的氢,在原位碳沉积后直接用作阳极材料。在甲烷裂解过程中,900℃催化分解CH₄在Fe核(≈50 nm)周围形成洋葱状石墨碳壳(≈280层),生成结构稳定且导电的Fe@C900复合材料,无需后处理。这种富含碳的催化剂在过渡到电池环境时表现出优异的电化学行为。在没有任何导电添加剂的情况下,Fe@C900的可逆容量为380毫安时(g⁻¹),在高温下1000次循环后保持率为98%。在5000 g的磁场下,铁芯内的自旋排列触发了锂离子的定向迁移,提高了150%的速率性能。多模态表征揭示了加速的锂动力学、稳定的SEI演化和深部锂化行为。DFT计算进一步证实了锂的强吸附(-24.14 eV)和低插入势阱(-22.85 eV),验证了自旋引导扩散机制。这项工作介绍了一类新的氢衍生铁磁阳极,其中清洁氢过程的副产品被重新设计成高速率,无导体的锂存储平台。通过共享中间体材料,将制氢与储能结合起来,该策略为碳效率高、磁性增强的电池系统提供了一条可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-Orchestrated Lithium Diffusion in Reforged Ferromagnetic Fe@C Anodes

Spin-Orchestrated Lithium Diffusion in Reforged Ferromagnetic Fe@C Anodes

This reports a dual-functional approach in which Fe catalysts, initially employed for methane pyrolysis to generate COx-free hydrogen, are directly repurposed as anode materials following in situ carbon deposition. During methane splitting, catalytic decomposition of CH₄ at 900 °C forms onion-like graphitic carbon shells (≈280 layers) around Fe cores (≈50 nm), producing a structurally stable and electrically conductive Fe@C900 composite without post-treatment. This carbon-enriched catalyst demonstrates exceptional electrochemical behavior when transitioned into a battery context. Without any conductive additives, Fe@C900 delivers a reversible capacity of 380 mAh g⁻¹ with 98% retention over 1000 cycles at 1 C. Under a 5000 G magnetic field, spin alignment within the Fe cores triggers directional lithium-ion migration, enhancing rate performance by 150%. Multimodal characterization reveals accelerated lithium kinetics, stable SEI evolution, and deep lithiation behavior. DFT calculations further confirm strong lithium adsorption (−24.14 eV) and low insertion barriers (−22.85 eV), validating the spin-guided diffusion mechanism. This work introduces a new class of hydrogen-derived ferromagnetic anodes, where the byproduct of a clean hydrogen process is re-engineered into a high-rate, conductor-free lithium storage platform. By coupling hydrogen generation with energy storage through shared material intermediates, this strategy offers a scalable path to carbon-efficient, magnetically enhanced battery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信