基于fet的人工突触连接的复合氧化物二维电子气中的涌现多铁性。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohammad Karbalaei Akbari, Yanbin Cui, Christophe Detavernier, Serge Zhuiykov
{"title":"基于fet的人工突触连接的复合氧化物二维电子气中的涌现多铁性。","authors":"Mohammad Karbalaei Akbari, Yanbin Cui, Christophe Detavernier, Serge Zhuiykov","doi":"10.1039/d5mh00937e","DOIUrl":null,"url":null,"abstract":"<p><p>Designing multifunctional nanoarchitectures that integrate distinct physical phenomena is paramount for next-generation electronics. Here, we report the emergence of a two-dimensional electron gas (2DEG) coexisting with robust multiferroicity at complex oxide heterointerfaces. Synthesized <i>via</i> atomic layer deposition (ALD), these ultrathin heterostructures comprise a ferroelectric Ti<sub>0.6</sub>Sn<sub>0.4</sub>O<sub>2</sub> layer coupled with ferromagnetic Cr-doped SnO<sub>2</sub>. This unique integration engenders strong spin-charge-lattice interactions within the 2DEG, driven by the coupling between switchable ferroelectric domains and itinerant ferromagnetism. Piezoresponse force microscopy confirms tunable ferroelectric polarization, while magnetotransport measurements, including clear Shubnikov-de Haas oscillations, reveal high-mobility quantum transport within the 2DEG. Critically, the heterostructure exhibits dynamic capacitive-to-inductive transitions and current-induced polarization switching, characteristic of ferroelectric memristive behavior suitable for FET-based artificial synaptic junctions. Programmable pulse transient current responses demonstrate the potential for emulating synaptic plasticity. These findings unveil an all-oxide platform uniquely combining ferroelectricity, ferromagnetism, memristive switching, and quantum transport, paving the way for novel spin-orbitronic devices and energy-efficient neuromorphic computing architectures.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent multiferroicity in two-dimensional electron gas of complex oxides for FET-based artificial synaptic junctions.\",\"authors\":\"Mohammad Karbalaei Akbari, Yanbin Cui, Christophe Detavernier, Serge Zhuiykov\",\"doi\":\"10.1039/d5mh00937e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Designing multifunctional nanoarchitectures that integrate distinct physical phenomena is paramount for next-generation electronics. Here, we report the emergence of a two-dimensional electron gas (2DEG) coexisting with robust multiferroicity at complex oxide heterointerfaces. Synthesized <i>via</i> atomic layer deposition (ALD), these ultrathin heterostructures comprise a ferroelectric Ti<sub>0.6</sub>Sn<sub>0.4</sub>O<sub>2</sub> layer coupled with ferromagnetic Cr-doped SnO<sub>2</sub>. This unique integration engenders strong spin-charge-lattice interactions within the 2DEG, driven by the coupling between switchable ferroelectric domains and itinerant ferromagnetism. Piezoresponse force microscopy confirms tunable ferroelectric polarization, while magnetotransport measurements, including clear Shubnikov-de Haas oscillations, reveal high-mobility quantum transport within the 2DEG. Critically, the heterostructure exhibits dynamic capacitive-to-inductive transitions and current-induced polarization switching, characteristic of ferroelectric memristive behavior suitable for FET-based artificial synaptic junctions. Programmable pulse transient current responses demonstrate the potential for emulating synaptic plasticity. These findings unveil an all-oxide platform uniquely combining ferroelectricity, ferromagnetism, memristive switching, and quantum transport, paving the way for novel spin-orbitronic devices and energy-efficient neuromorphic computing architectures.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00937e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00937e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计集成不同物理现象的多功能纳米架构对于下一代电子学至关重要。在这里,我们报告了二维电子气体(2DEG)在复杂的氧化物异质界面上与鲁棒多铁性共存的出现。这些超薄异质结构通过原子层沉积(ALD)合成,由铁电Ti0.6Sn0.4O2层与铁磁cr掺杂SnO2偶联组成。这种独特的集成在可切换铁电畴和流动铁磁性之间的耦合驱动下,在2DEG内产生了强的自旋-电荷-晶格相互作用。压电响应力显微镜证实了可调谐的铁电极化,而磁输运测量,包括清晰的舒布尼科夫-德哈斯振荡,揭示了2DEG内的高迁移率量子输运。关键是,异质结构表现出动态容感性转变和电流诱导的极化开关,具有适合基于fet的人工突触连接的铁电忆阻特性。可编程脉冲瞬态电流响应显示了模拟突触可塑性的潜力。这些发现揭示了一个独特地结合了铁电性、铁磁性、忆阻开关和量子输运的全氧化物平台,为新型自旋轨道电子器件和节能神经形态计算架构铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent multiferroicity in two-dimensional electron gas of complex oxides for FET-based artificial synaptic junctions.

Designing multifunctional nanoarchitectures that integrate distinct physical phenomena is paramount for next-generation electronics. Here, we report the emergence of a two-dimensional electron gas (2DEG) coexisting with robust multiferroicity at complex oxide heterointerfaces. Synthesized via atomic layer deposition (ALD), these ultrathin heterostructures comprise a ferroelectric Ti0.6Sn0.4O2 layer coupled with ferromagnetic Cr-doped SnO2. This unique integration engenders strong spin-charge-lattice interactions within the 2DEG, driven by the coupling between switchable ferroelectric domains and itinerant ferromagnetism. Piezoresponse force microscopy confirms tunable ferroelectric polarization, while magnetotransport measurements, including clear Shubnikov-de Haas oscillations, reveal high-mobility quantum transport within the 2DEG. Critically, the heterostructure exhibits dynamic capacitive-to-inductive transitions and current-induced polarization switching, characteristic of ferroelectric memristive behavior suitable for FET-based artificial synaptic junctions. Programmable pulse transient current responses demonstrate the potential for emulating synaptic plasticity. These findings unveil an all-oxide platform uniquely combining ferroelectricity, ferromagnetism, memristive switching, and quantum transport, paving the way for novel spin-orbitronic devices and energy-efficient neuromorphic computing architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信