光-生物-电催化微生物燃料和电解电池的碳基电极:进展与展望。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ankita Chaurasiya, Yashmeen Budania, Goldy Shah, Aradhana Mishra, Shiv Singh
{"title":"光-生物-电催化微生物燃料和电解电池的碳基电极:进展与展望。","authors":"Ankita Chaurasiya, Yashmeen Budania, Goldy Shah, Aradhana Mishra, Shiv Singh","doi":"10.1039/d5mh00344j","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for sustainable energy and effective wastewater treatment has propelled the advancement of bio-electrochemical systems (BESs), particularly microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). These systems integrate bioelectricity generation with organic and inorganic pollutant degradation, offering a sustainable solution for environmental remediation. However, challenges such as high overpotential, reliance on noble metal electrodes, and inconsistent performance have necessitated innovative improvements. The incorporation of photocatalysis into BESs has led to the development of photo-bio-electrochemical systems (PBESs), including photo-microbial fuel cells (PMFCs) and photo-microbial electrolysis cells (PMECs), which leverage optical energy to enhance efficiency. Carbon-based electrode materials, owing to their high porosity, conductivity, and biocompatibility, have emerged as ideal candidates for improving PBES performance. Advanced carbon nanostructures, such as graphene, carbon nanotubes, and metal-graphitic carbon nitride composites, have demonstrated superior photocatalytic properties, promoting enhanced charge separation, CO<sub>2</sub> reduction, hydrogen production, and wastewater treatment. PBES integrating light-activated semiconductor materials with BESs, further amplify pollutant degradation and energy conversion efficiency. Despite significant progress, optimizing electrode materials and improving charge transport remain key challenges for scalable and cost-effective deployment. This review highlights the latest advancements in carbon-based electrodes for PBESs, detailing their mechanisms, photocatalytic properties, and future prospects in sustainable energy production and environmental remediation. By addressing existing material limitations and exploring novel photocatalytic enhancements, this work aims to contribute to the development of next-generation PBESs, fostering circular economy practices and carbon-neutral energy solutions.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-based electrodes for photo-bio-electrocatalytic microbial fuel and electrolysis cells: advances and perspectives.\",\"authors\":\"Ankita Chaurasiya, Yashmeen Budania, Goldy Shah, Aradhana Mishra, Shiv Singh\",\"doi\":\"10.1039/d5mh00344j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for sustainable energy and effective wastewater treatment has propelled the advancement of bio-electrochemical systems (BESs), particularly microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). These systems integrate bioelectricity generation with organic and inorganic pollutant degradation, offering a sustainable solution for environmental remediation. However, challenges such as high overpotential, reliance on noble metal electrodes, and inconsistent performance have necessitated innovative improvements. The incorporation of photocatalysis into BESs has led to the development of photo-bio-electrochemical systems (PBESs), including photo-microbial fuel cells (PMFCs) and photo-microbial electrolysis cells (PMECs), which leverage optical energy to enhance efficiency. Carbon-based electrode materials, owing to their high porosity, conductivity, and biocompatibility, have emerged as ideal candidates for improving PBES performance. Advanced carbon nanostructures, such as graphene, carbon nanotubes, and metal-graphitic carbon nitride composites, have demonstrated superior photocatalytic properties, promoting enhanced charge separation, CO<sub>2</sub> reduction, hydrogen production, and wastewater treatment. PBES integrating light-activated semiconductor materials with BESs, further amplify pollutant degradation and energy conversion efficiency. Despite significant progress, optimizing electrode materials and improving charge transport remain key challenges for scalable and cost-effective deployment. This review highlights the latest advancements in carbon-based electrodes for PBESs, detailing their mechanisms, photocatalytic properties, and future prospects in sustainable energy production and environmental remediation. By addressing existing material limitations and exploring novel photocatalytic enhancements, this work aims to contribute to the development of next-generation PBESs, fostering circular economy practices and carbon-neutral energy solutions.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00344j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00344j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对可持续能源和有效废水处理的需求不断增长,推动了生物电化学系统(BESs)的发展,特别是微生物燃料电池(mfc)和微生物电解电池(MECs)。这些系统将生物发电与有机和无机污染物降解相结合,为环境修复提供了可持续的解决方案。然而,诸如高过电位、对贵金属电极的依赖以及不稳定的性能等挑战需要创新的改进。光催化技术的应用促进了光生物电化学系统(pess)的发展,包括光微生物燃料电池(pmfc)和光微生物电解电池(PMECs),它们利用光能来提高效率。碳基电极材料由于其高孔隙率、导电性和生物相容性,已成为改善PBES性能的理想候选材料。先进的碳纳米结构,如石墨烯、碳纳米管和金属-石墨氮化碳复合材料,已经证明了优越的光催化性能,促进了电荷分离、二氧化碳还原、制氢和废水处理。PBES将光活化半导体材料与BESs集成在一起,进一步提高了污染物降解和能量转换效率。尽管取得了重大进展,但优化电极材料和改善电荷传输仍然是可扩展和经济高效部署的关键挑战。本文综述了碳基pess电极的最新进展,详细介绍了它们的机理、光催化性能以及在可持续能源生产和环境修复方面的未来前景。通过解决现有材料的限制和探索新的光催化增强,这项工作旨在促进下一代ppess的发展,促进循环经济实践和碳中和能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon-based electrodes for photo-bio-electrocatalytic microbial fuel and electrolysis cells: advances and perspectives.

The growing demand for sustainable energy and effective wastewater treatment has propelled the advancement of bio-electrochemical systems (BESs), particularly microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). These systems integrate bioelectricity generation with organic and inorganic pollutant degradation, offering a sustainable solution for environmental remediation. However, challenges such as high overpotential, reliance on noble metal electrodes, and inconsistent performance have necessitated innovative improvements. The incorporation of photocatalysis into BESs has led to the development of photo-bio-electrochemical systems (PBESs), including photo-microbial fuel cells (PMFCs) and photo-microbial electrolysis cells (PMECs), which leverage optical energy to enhance efficiency. Carbon-based electrode materials, owing to their high porosity, conductivity, and biocompatibility, have emerged as ideal candidates for improving PBES performance. Advanced carbon nanostructures, such as graphene, carbon nanotubes, and metal-graphitic carbon nitride composites, have demonstrated superior photocatalytic properties, promoting enhanced charge separation, CO2 reduction, hydrogen production, and wastewater treatment. PBES integrating light-activated semiconductor materials with BESs, further amplify pollutant degradation and energy conversion efficiency. Despite significant progress, optimizing electrode materials and improving charge transport remain key challenges for scalable and cost-effective deployment. This review highlights the latest advancements in carbon-based electrodes for PBESs, detailing their mechanisms, photocatalytic properties, and future prospects in sustainable energy production and environmental remediation. By addressing existing material limitations and exploring novel photocatalytic enhancements, this work aims to contribute to the development of next-generation PBESs, fostering circular economy practices and carbon-neutral energy solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信