子叶脱硫孢子的代谢权衡:剂量依赖的FeS纳米颗粒调节矿物转化的细胞外电子转移和基因表达。

IF 3.9 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Changdong Ke, Yanping Deng, Siyu Zhang, Qian Yao, Renren Wu, Yanping Bao, Xiaohu Jin, Chuling Guo and Zhi Dang
{"title":"子叶脱硫孢子的代谢权衡:剂量依赖的FeS纳米颗粒调节矿物转化的细胞外电子转移和基因表达。","authors":"Changdong Ke, Yanping Deng, Siyu Zhang, Qian Yao, Renren Wu, Yanping Bao, Xiaohu Jin, Chuling Guo and Zhi Dang","doi":"10.1039/D5EM00310E","DOIUrl":null,"url":null,"abstract":"<p >Biogenic ferrous sulfide nanoparticles (FeS NPs) regulate sulfate (SO<small><sub>4</sub></small><small><sup>2−</sup></small>)-reducing bacteria (SRB)-driven iron/sulfur cycling in SO<small><sub>4</sub></small><small><sup>2−</sup></small>-rich anaerobic environments, yet their dose-dependent impacts on SRB metabolism remain unclear. This study revealed how FeS NPs dose modulates <em>Desulfosporosus meridiei</em> (a model SRB) in reducing schwertmannite (Sch). SRB preferentially reduced Fe(<small>III</small>) over SO<small><sub>4</sub></small><small><sup>2−</sup></small> in Sch <em>via</em> FeS NPs-mediated extracellular electron transfer (EET). At low FeS doses (0–6 mM), the <em>dsr</em> gene expression (sulfur metabolism) associated with mineral transformation increased despite a decline in SRB abundance, accompanied by a significant enhancement in Fe(<small>III</small>) reduction rate, yielding siderite and pyrite as dominant products. This enhancement was attributed to FeS NPs acting as electron conduits, as evidenced by a 4–9-fold surge in bio-current intensity. However, at high FeS doses (≥6 mM), nanoparticle aggregation formed a relatively thick mineral encrustation on cell surfaces, blocking EET pathways and leaving goethite as a residual phase. Strikingly, SRB exhibited a metabolic trade-off, suppressing population growth to amplify <em>dsr</em>-driven electron flux under FeS stress. This adaptive strategy underscored SRB's resilience in FeS-rich environments while highlighting dose-dependent bifurcations in mineral transformation pathways. This study provided a new insight into manipulating SRB-dominated biogeochemical processes by controlling FeS NPs dose.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 8","pages":" 2442-2451"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic trade-offs in Desulfosporosus meridiei: dose-dependent FeS nanoparticles modulate extracellular electron transfer and gene expression for mineral transformation\",\"authors\":\"Changdong Ke, Yanping Deng, Siyu Zhang, Qian Yao, Renren Wu, Yanping Bao, Xiaohu Jin, Chuling Guo and Zhi Dang\",\"doi\":\"10.1039/D5EM00310E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biogenic ferrous sulfide nanoparticles (FeS NPs) regulate sulfate (SO<small><sub>4</sub></small><small><sup>2−</sup></small>)-reducing bacteria (SRB)-driven iron/sulfur cycling in SO<small><sub>4</sub></small><small><sup>2−</sup></small>-rich anaerobic environments, yet their dose-dependent impacts on SRB metabolism remain unclear. This study revealed how FeS NPs dose modulates <em>Desulfosporosus meridiei</em> (a model SRB) in reducing schwertmannite (Sch). SRB preferentially reduced Fe(<small>III</small>) over SO<small><sub>4</sub></small><small><sup>2−</sup></small> in Sch <em>via</em> FeS NPs-mediated extracellular electron transfer (EET). At low FeS doses (0–6 mM), the <em>dsr</em> gene expression (sulfur metabolism) associated with mineral transformation increased despite a decline in SRB abundance, accompanied by a significant enhancement in Fe(<small>III</small>) reduction rate, yielding siderite and pyrite as dominant products. This enhancement was attributed to FeS NPs acting as electron conduits, as evidenced by a 4–9-fold surge in bio-current intensity. However, at high FeS doses (≥6 mM), nanoparticle aggregation formed a relatively thick mineral encrustation on cell surfaces, blocking EET pathways and leaving goethite as a residual phase. Strikingly, SRB exhibited a metabolic trade-off, suppressing population growth to amplify <em>dsr</em>-driven electron flux under FeS stress. This adaptive strategy underscored SRB's resilience in FeS-rich environments while highlighting dose-dependent bifurcations in mineral transformation pathways. This study provided a new insight into manipulating SRB-dominated biogeochemical processes by controlling FeS NPs dose.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 8\",\"pages\":\" 2442-2451\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/em/d5em00310e\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/em/d5em00310e","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物源硫化亚铁纳米颗粒(FeS NPs)在富含SO42的厌氧环境中调节硫酸盐(SO42-)还原菌(SRB)驱动的铁/硫循环,但其对SRB代谢的剂量依赖性影响尚不清楚。本研究揭示了FeS NPs剂量如何调节子午线Desulfosporosus meridiei(一种模型SRB)还原schwertmanite (Sch)。SRB通过FeS nps介导的细胞外电子转移(EET)在Sch中优先还原Fe(III)而不是SO42-。在低FeS剂量(0-6 mM)下,尽管SRB丰度下降,但与矿物转化相关的dsr基因表达(硫代谢)增加,同时Fe(III)还原速率显著提高,产生的主要产物为黄铁矿和黄铁矿。这种增强归因于FeS NPs充当电子导管,生物电流强度激增4-9倍。然而,在高FeS剂量(≥6 mM)下,纳米颗粒聚集在细胞表面形成相对较厚的矿物结壳,阻断EET通路,留下针铁矿作为残留相。引人注目的是,在FeS胁迫下,SRB表现出一种代谢权衡,抑制种群生长以放大dsr驱动的电子通量。这一适应性策略强调了SRB在富fes环境中的弹性,同时强调了矿物转化途径中的剂量依赖分支。本研究为通过控制FeS NPs剂量调控srb主导的生物地球化学过程提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabolic trade-offs in Desulfosporosus meridiei: dose-dependent FeS nanoparticles modulate extracellular electron transfer and gene expression for mineral transformation

Metabolic trade-offs in Desulfosporosus meridiei: dose-dependent FeS nanoparticles modulate extracellular electron transfer and gene expression for mineral transformation

Biogenic ferrous sulfide nanoparticles (FeS NPs) regulate sulfate (SO42−)-reducing bacteria (SRB)-driven iron/sulfur cycling in SO42−-rich anaerobic environments, yet their dose-dependent impacts on SRB metabolism remain unclear. This study revealed how FeS NPs dose modulates Desulfosporosus meridiei (a model SRB) in reducing schwertmannite (Sch). SRB preferentially reduced Fe(III) over SO42− in Sch via FeS NPs-mediated extracellular electron transfer (EET). At low FeS doses (0–6 mM), the dsr gene expression (sulfur metabolism) associated with mineral transformation increased despite a decline in SRB abundance, accompanied by a significant enhancement in Fe(III) reduction rate, yielding siderite and pyrite as dominant products. This enhancement was attributed to FeS NPs acting as electron conduits, as evidenced by a 4–9-fold surge in bio-current intensity. However, at high FeS doses (≥6 mM), nanoparticle aggregation formed a relatively thick mineral encrustation on cell surfaces, blocking EET pathways and leaving goethite as a residual phase. Strikingly, SRB exhibited a metabolic trade-off, suppressing population growth to amplify dsr-driven electron flux under FeS stress. This adaptive strategy underscored SRB's resilience in FeS-rich environments while highlighting dose-dependent bifurcations in mineral transformation pathways. This study provided a new insight into manipulating SRB-dominated biogeochemical processes by controlling FeS NPs dose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信