分子哈密顿量的改进Krylov方法:通过张量超收缩降低内存开销和复杂度缩放。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-07-22 Epub Date: 2025-07-02 DOI:10.1021/acs.jctc.5c00525
Yu Wang, Maxine Luo, Matthias Reumann, Christian B Mendl
{"title":"分子哈密顿量的改进Krylov方法:通过张量超收缩降低内存开销和复杂度缩放。","authors":"Yu Wang, Maxine Luo, Matthias Reumann, Christian B Mendl","doi":"10.1021/acs.jctc.5c00525","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an algorithm that is simultaneously memory-efficient and low-scaling for applying ab initio molecular Hamiltonians to matrix-product states (MPS) via the tensor-hypercontraction (THC) format. These gains carry over to Krylov subspace methods, which can find low-lying eigenstates and simulate quantum time evolution while avoiding local minima and maintaining high accuracy. In our approach, the molecular Hamiltonian is represented as a sum of products of four MPOs, each with a bond dimension of only 2. Iteratively applying the MPOs to the current quantum state in MPS form, summing and recompressing the MPS leads to a scheme with the same asymptotic memory cost as the bare MPS and reduces the computational cost scaling compared to the Krylov method using a conventional MPO construction. We provide a detailed theoretical derivation of these statements and conduct supporting numerical experiments to demonstrate the advantage. Our algorithm is highly parallelizable and thus lends itself to large-scale HPC simulations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"6874-6886"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Krylov Methods for Molecular Hamiltonians: Reduced Memory Cost and Complexity Scaling via Tensor Hypercontraction.\",\"authors\":\"Yu Wang, Maxine Luo, Matthias Reumann, Christian B Mendl\",\"doi\":\"10.1021/acs.jctc.5c00525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce an algorithm that is simultaneously memory-efficient and low-scaling for applying ab initio molecular Hamiltonians to matrix-product states (MPS) via the tensor-hypercontraction (THC) format. These gains carry over to Krylov subspace methods, which can find low-lying eigenstates and simulate quantum time evolution while avoiding local minima and maintaining high accuracy. In our approach, the molecular Hamiltonian is represented as a sum of products of four MPOs, each with a bond dimension of only 2. Iteratively applying the MPOs to the current quantum state in MPS form, summing and recompressing the MPS leads to a scheme with the same asymptotic memory cost as the bare MPS and reduces the computational cost scaling compared to the Krylov method using a conventional MPO construction. We provide a detailed theoretical derivation of these statements and conduct supporting numerical experiments to demonstrate the advantage. Our algorithm is highly parallelizable and thus lends itself to large-scale HPC simulations.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"6874-6886\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00525\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种同时具有内存效率和低尺度的算法,用于通过张量-超收缩(THC)格式将从头算分子哈密顿量应用于矩阵积态(MPS)。这些增益延续到Krylov子空间方法中,该方法可以找到低洼特征态并模拟量子时间演化,同时避免局部最小值并保持高精度。在我们的方法中,分子的哈密顿量被表示为四个mpo的乘积的和,每个mpo的键维只有2。迭代地将MPO以MPS形式应用于当前量子态,对MPS求和并重新压缩得到与裸MPS具有相同渐近存储成本的方案,并且与使用传统MPO结构的Krylov方法相比,减少了计算成本缩放。我们提供了这些陈述的详细理论推导,并进行了支持性的数值实验来证明其优势。我们的算法是高度并行化的,因此适合大规模的HPC模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Krylov Methods for Molecular Hamiltonians: Reduced Memory Cost and Complexity Scaling via Tensor Hypercontraction.

We introduce an algorithm that is simultaneously memory-efficient and low-scaling for applying ab initio molecular Hamiltonians to matrix-product states (MPS) via the tensor-hypercontraction (THC) format. These gains carry over to Krylov subspace methods, which can find low-lying eigenstates and simulate quantum time evolution while avoiding local minima and maintaining high accuracy. In our approach, the molecular Hamiltonian is represented as a sum of products of four MPOs, each with a bond dimension of only 2. Iteratively applying the MPOs to the current quantum state in MPS form, summing and recompressing the MPS leads to a scheme with the same asymptotic memory cost as the bare MPS and reduces the computational cost scaling compared to the Krylov method using a conventional MPO construction. We provide a detailed theoretical derivation of these statements and conduct supporting numerical experiments to demonstrate the advantage. Our algorithm is highly parallelizable and thus lends itself to large-scale HPC simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信