Shimul Biswas, Diya Pratish Chohan, Mrunmayee Wankhede, Jackson Rodrigues, Ganesh Bhat, Stanley Mathew, Krishna Kishore Mahato
{"title":"光声综合多模式诊断结直肠癌。","authors":"Shimul Biswas, Diya Pratish Chohan, Mrunmayee Wankhede, Jackson Rodrigues, Ganesh Bhat, Stanley Mathew, Krishna Kishore Mahato","doi":"10.1021/acsbiomaterials.5c00918","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"4033-4049"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.\",\"authors\":\"Shimul Biswas, Diya Pratish Chohan, Mrunmayee Wankhede, Jackson Rodrigues, Ganesh Bhat, Stanley Mathew, Krishna Kishore Mahato\",\"doi\":\"10.1021/acsbiomaterials.5c00918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"4033-4049\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00918\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00918","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.
Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture