Ji Seop Oh, Ananya Biswas, Mason L. Klemm, Hengxin Tan, Yaofeng Xie, Bin Gao, Makoto Hashimoto, Donghui Lu, Binghai Yan, Pengcheng Dai, Robert J. Birgeneau, Ming Yi
{"title":"解缠在一起的顺序在磁性kagome金属","authors":"Ji Seop Oh, Ananya Biswas, Mason L. Klemm, Hengxin Tan, Yaofeng Xie, Bin Gao, Makoto Hashimoto, Donghui Lu, Binghai Yan, Pengcheng Dai, Robert J. Birgeneau, Ming Yi","doi":"10.1126/sciadv.adt2195","DOIUrl":null,"url":null,"abstract":"<div >Intertwined orders appear when multiple orders are strongly interacting, and kagome metals have emerged as new platforms to explore exotic phases. FeGe has been found to develop a charge density wave (CDW) order within magnetic phase, suggesting an intricate interplay of the lattice, charge, and spin degrees of freedom. Recently, postgrowth annealing has been proposed to tune the CDW order from long-range to complete suppression, offering a tuning knob for the CDW order. Here, by comparing the electronic structures of FeGe subjected to different annealing conditions and distinct CDW properties, we report spectral evolution associated with the lattice and spin degrees of freedom. We find band evolution linked to a spin density wave (SDW) order present in both samples with and without CDW order, and another evolution connected to the lattice distortions that onset with the long-range CDW order and revert with the SDW order. Our results reveal a rare competitive cooperation of the lattice, spin, and charge in FeGe.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt2195","citationCount":"0","resultStr":"{\"title\":\"Disentangling the intertwined orders in a magnetic kagome metal\",\"authors\":\"Ji Seop Oh, Ananya Biswas, Mason L. Klemm, Hengxin Tan, Yaofeng Xie, Bin Gao, Makoto Hashimoto, Donghui Lu, Binghai Yan, Pengcheng Dai, Robert J. Birgeneau, Ming Yi\",\"doi\":\"10.1126/sciadv.adt2195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Intertwined orders appear when multiple orders are strongly interacting, and kagome metals have emerged as new platforms to explore exotic phases. FeGe has been found to develop a charge density wave (CDW) order within magnetic phase, suggesting an intricate interplay of the lattice, charge, and spin degrees of freedom. Recently, postgrowth annealing has been proposed to tune the CDW order from long-range to complete suppression, offering a tuning knob for the CDW order. Here, by comparing the electronic structures of FeGe subjected to different annealing conditions and distinct CDW properties, we report spectral evolution associated with the lattice and spin degrees of freedom. We find band evolution linked to a spin density wave (SDW) order present in both samples with and without CDW order, and another evolution connected to the lattice distortions that onset with the long-range CDW order and revert with the SDW order. Our results reveal a rare competitive cooperation of the lattice, spin, and charge in FeGe.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 27\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt2195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt2195\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt2195","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Disentangling the intertwined orders in a magnetic kagome metal
Intertwined orders appear when multiple orders are strongly interacting, and kagome metals have emerged as new platforms to explore exotic phases. FeGe has been found to develop a charge density wave (CDW) order within magnetic phase, suggesting an intricate interplay of the lattice, charge, and spin degrees of freedom. Recently, postgrowth annealing has been proposed to tune the CDW order from long-range to complete suppression, offering a tuning knob for the CDW order. Here, by comparing the electronic structures of FeGe subjected to different annealing conditions and distinct CDW properties, we report spectral evolution associated with the lattice and spin degrees of freedom. We find band evolution linked to a spin density wave (SDW) order present in both samples with and without CDW order, and another evolution connected to the lattice distortions that onset with the long-range CDW order and revert with the SDW order. Our results reveal a rare competitive cooperation of the lattice, spin, and charge in FeGe.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.