解析二维III-V半导体的稳定性:构建块及其多功能组装

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuan Yan, Kaiyun Chen, Minglei Sun, Yinchang Ma, Peiyao Wang, Junkai Deng, Xixiang Zhang, Jefferson Zhe Liu
{"title":"解析二维III-V半导体的稳定性:构建块及其多功能组装","authors":"Yuan Yan,&nbsp;Kaiyun Chen,&nbsp;Minglei Sun,&nbsp;Yinchang Ma,&nbsp;Peiyao Wang,&nbsp;Junkai Deng,&nbsp;Xixiang Zhang,&nbsp;Jefferson Zhe Liu","doi":"10.1126/sciadv.adu5294","DOIUrl":null,"url":null,"abstract":"<div >Two-dimensionalization unlocks the unique and superior physical properties of materials, but extending it to nonlayered crystals is challenging. Using density functional theory and machine learning, we unveil a universal rule for creating stable two-dimensional counterparts of traditional high-performance III-V semiconductors, i.e., the versatile assembly of building blocks originating from orbital hybridization and electron transfers adhering to the electron counting rule. Akin to LEGO construction, the various building blocks are arranged in different configurations, introducing diverse two-dimensional structures with higher energetic stability than previous structures. Regression analysis reveals the energies of these structures as a linear superposition of the energies of their building blocks, further confirming the LEGO concept. Notably, the predicted two-dimensional GaSb exhibits a hole mobility (~10<sup>8</sup> square centimeters per volt per second) that far surpasses that of graphene (2 × 10<sup>5</sup> square centimeters per volt per second). This study highlights the expansion of nonlayered materials into two dimensions and the potential of two-dimensional confinement in traditional materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu5294","citationCount":"0","resultStr":"{\"title\":\"Deciphering the stability of two-dimensional III-V semiconductors: Building blocks and their versatile assembly\",\"authors\":\"Yuan Yan,&nbsp;Kaiyun Chen,&nbsp;Minglei Sun,&nbsp;Yinchang Ma,&nbsp;Peiyao Wang,&nbsp;Junkai Deng,&nbsp;Xixiang Zhang,&nbsp;Jefferson Zhe Liu\",\"doi\":\"10.1126/sciadv.adu5294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Two-dimensionalization unlocks the unique and superior physical properties of materials, but extending it to nonlayered crystals is challenging. Using density functional theory and machine learning, we unveil a universal rule for creating stable two-dimensional counterparts of traditional high-performance III-V semiconductors, i.e., the versatile assembly of building blocks originating from orbital hybridization and electron transfers adhering to the electron counting rule. Akin to LEGO construction, the various building blocks are arranged in different configurations, introducing diverse two-dimensional structures with higher energetic stability than previous structures. Regression analysis reveals the energies of these structures as a linear superposition of the energies of their building blocks, further confirming the LEGO concept. Notably, the predicted two-dimensional GaSb exhibits a hole mobility (~10<sup>8</sup> square centimeters per volt per second) that far surpasses that of graphene (2 × 10<sup>5</sup> square centimeters per volt per second). This study highlights the expansion of nonlayered materials into two dimensions and the potential of two-dimensional confinement in traditional materials.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 27\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu5294\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu5294\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu5294","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二维化揭示了材料独特而优越的物理特性,但将其扩展到非层状晶体是具有挑战性的。利用密度泛函理论和机器学习,我们揭示了一个通用规则,用于创建传统高性能III-V半导体的稳定二维对应体,即源自轨道杂化和电子转移的构建块的通用组装,遵守电子计数规则。类似于乐高结构,不同的建筑模块以不同的配置排列,引入了不同的二维结构,比以前的结构具有更高的能量稳定性。回归分析显示,这些结构的能量与积木的能量呈线性叠加,进一步证实了乐高的概念。值得注意的是,预测的二维GaSb显示出的空穴迁移率(~108平方厘米/伏特每秒)远远超过石墨烯(2 × 105平方厘米/伏特每秒)。本研究强调了非层状材料向二维的扩展以及传统材料中二维约束的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the stability of two-dimensional III-V semiconductors: Building blocks and their versatile assembly

Deciphering the stability of two-dimensional III-V semiconductors: Building blocks and their versatile assembly
Two-dimensionalization unlocks the unique and superior physical properties of materials, but extending it to nonlayered crystals is challenging. Using density functional theory and machine learning, we unveil a universal rule for creating stable two-dimensional counterparts of traditional high-performance III-V semiconductors, i.e., the versatile assembly of building blocks originating from orbital hybridization and electron transfers adhering to the electron counting rule. Akin to LEGO construction, the various building blocks are arranged in different configurations, introducing diverse two-dimensional structures with higher energetic stability than previous structures. Regression analysis reveals the energies of these structures as a linear superposition of the energies of their building blocks, further confirming the LEGO concept. Notably, the predicted two-dimensional GaSb exhibits a hole mobility (~108 square centimeters per volt per second) that far surpasses that of graphene (2 × 105 square centimeters per volt per second). This study highlights the expansion of nonlayered materials into two dimensions and the potential of two-dimensional confinement in traditional materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信