条件变分自编码器增强地震地震动建模

IF 1.9
Pavan Mohan Neelamraju, Akshay Pratap Singh, STG Raghukanth
{"title":"条件变分自编码器增强地震地震动建模","authors":"Pavan Mohan Neelamraju,&nbsp;Akshay Pratap Singh,&nbsp;STG Raghukanth","doi":"10.1002/eer2.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The current research focuses on creating a Conditional Variational Autoencoder designed for encoding and reconstructing 5% damped spectral acceleration (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>S</mi>\n \n <mi>a</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>). This model integrates parameters related to the characteristics of the seismic source, propagation path, and site conditions, utilizing them as conditional inputs through the bottleneck layer. Unlike conventional Ground Motion Models, which typically use these parameters in a deterministic fashion, our model captures complex, nonlinear interactions between these parameters and ground motion through a probabilistic framework. The model is trained on an extensive data set comprising 23,929 ground-motion records from both horizontal and vertical directions, sourced from 325 shallow-crustal events in the updated NGA-West2 database. The input parameters encompass moment magnitude (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>w</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>), Joyner–Boore distance (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>JB</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>), fault mechanism (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>), hypocentral depth (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>H</mi>\n \n <mi>d</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>), average shear-wave velocity up to 30 m depth (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mn>30</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>), and the direction of ground motion (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>dir</mi>\n </mrow>\n </mrow>\n </semantics></math>). To validate the model's reliability, both interevent and intraevent residual analyses are conducted, affirming its robustness and applicability. Furthermore, the model's performance is assessed through residual analyses. Thus, this study contributes to advancing techniques in ground motion modeling, specifically enhancing seismic hazard assessment and the reconstruction of ground-motion data.</p></div>","PeriodicalId":100383,"journal":{"name":"Earthquake Engineering and Resilience","volume":"4 2","pages":"178-201"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.70006","citationCount":"0","resultStr":"{\"title\":\"Enhanced Seismic Ground Motion Modeling With Conditional Variational Autoencoder\",\"authors\":\"Pavan Mohan Neelamraju,&nbsp;Akshay Pratap Singh,&nbsp;STG Raghukanth\",\"doi\":\"10.1002/eer2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The current research focuses on creating a Conditional Variational Autoencoder designed for encoding and reconstructing 5% damped spectral acceleration (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>S</mi>\\n \\n <mi>a</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>). This model integrates parameters related to the characteristics of the seismic source, propagation path, and site conditions, utilizing them as conditional inputs through the bottleneck layer. Unlike conventional Ground Motion Models, which typically use these parameters in a deterministic fashion, our model captures complex, nonlinear interactions between these parameters and ground motion through a probabilistic framework. The model is trained on an extensive data set comprising 23,929 ground-motion records from both horizontal and vertical directions, sourced from 325 shallow-crustal events in the updated NGA-West2 database. The input parameters encompass moment magnitude (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mi>w</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>), Joyner–Boore distance (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>JB</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>), fault mechanism (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>), hypocentral depth (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mi>d</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>), average shear-wave velocity up to 30 m depth (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>V</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mn>30</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>), and the direction of ground motion (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>dir</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>). To validate the model's reliability, both interevent and intraevent residual analyses are conducted, affirming its robustness and applicability. Furthermore, the model's performance is assessed through residual analyses. Thus, this study contributes to advancing techniques in ground motion modeling, specifically enhancing seismic hazard assessment and the reconstruction of ground-motion data.</p></div>\",\"PeriodicalId\":100383,\"journal\":{\"name\":\"Earthquake Engineering and Resilience\",\"volume\":\"4 2\",\"pages\":\"178-201\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eer2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eer2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究重点是创建一个条件变分自编码器,用于编码和重建5%阻尼谱加速度(sa)。该模型集成了与震源特征、传播路径和场地条件相关的参数,将它们作为瓶颈层的条件输入。与传统的地面运动模型不同,传统的地面运动模型通常以确定性的方式使用这些参数,我们的模型通过概率框架捕获这些参数和地面运动之间复杂的非线性相互作用。该模型是在一个广泛的数据集上进行训练的,该数据集包括23,929个水平和垂直方向的地面运动记录,这些记录来自更新的NGA-West2数据库中的325个浅层地壳事件。输入参数包含矩量(M w),Joyner-Boore距离(R JB),故障机理(F),震源深度(H d);30 m深度的平均横波速度(V s 30);和地面运动的方向(dir)。为了验证模型的可靠性,对模型进行了事件间和事件内残差分析,验证了模型的鲁棒性和适用性。此外,通过残差分析评估模型的性能。因此,该研究有助于推进地震动建模技术,特别是加强地震危险性评估和地震动数据的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Seismic Ground Motion Modeling With Conditional Variational Autoencoder

Enhanced Seismic Ground Motion Modeling With Conditional Variational Autoencoder

The current research focuses on creating a Conditional Variational Autoencoder designed for encoding and reconstructing 5% damped spectral acceleration ( S a ). This model integrates parameters related to the characteristics of the seismic source, propagation path, and site conditions, utilizing them as conditional inputs through the bottleneck layer. Unlike conventional Ground Motion Models, which typically use these parameters in a deterministic fashion, our model captures complex, nonlinear interactions between these parameters and ground motion through a probabilistic framework. The model is trained on an extensive data set comprising 23,929 ground-motion records from both horizontal and vertical directions, sourced from 325 shallow-crustal events in the updated NGA-West2 database. The input parameters encompass moment magnitude ( M w ), Joyner–Boore distance ( R JB ), fault mechanism ( F ), hypocentral depth ( H d ), average shear-wave velocity up to 30 m depth ( V s 30 ), and the direction of ground motion ( dir ). To validate the model's reliability, both interevent and intraevent residual analyses are conducted, affirming its robustness and applicability. Furthermore, the model's performance is assessed through residual analyses. Thus, this study contributes to advancing techniques in ground motion modeling, specifically enhancing seismic hazard assessment and the reconstruction of ground-motion data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信