全寿命热负荷敏感性建模框架

IF 12 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Pieter A. Arnold, Daniel W. A. Noble, Adrienne B. Nicotra, Michael R. Kearney, Enrico L. Rezende, Samuel C. Andrew, Verónica F. Briceño, Lauren B. Buckley, Keith A. Christian, Susana Clusella-Trullas, Sonya R. Geange, Lydia K. Guja, Octavio Jiménez Robles, Ben J. Kefford, Vanessa Kellermann, Andrea Leigh, Renée M. Marchin, Karel Mokany, Joanne M. Bennett
{"title":"全寿命热负荷敏感性建模框架","authors":"Pieter A. Arnold,&nbsp;Daniel W. A. Noble,&nbsp;Adrienne B. Nicotra,&nbsp;Michael R. Kearney,&nbsp;Enrico L. Rezende,&nbsp;Samuel C. Andrew,&nbsp;Verónica F. Briceño,&nbsp;Lauren B. Buckley,&nbsp;Keith A. Christian,&nbsp;Susana Clusella-Trullas,&nbsp;Sonya R. Geange,&nbsp;Lydia K. Guja,&nbsp;Octavio Jiménez Robles,&nbsp;Ben J. Kefford,&nbsp;Vanessa Kellermann,&nbsp;Andrea Leigh,&nbsp;Renée M. Marchin,&nbsp;Karel Mokany,&nbsp;Joanne M. Bennett","doi":"10.1111/gcb.70315","DOIUrl":null,"url":null,"abstract":"<p>Forecasts of vulnerability to climate warming require an integrative understanding of how species are exposed to, are damaged by, and recover from thermal stress in natural environments. The sensitivity of species to temperature depends on the frequency, duration, and magnitude of thermal stress. Thus, there is a generally recognized need to move beyond physiological metrics based solely on critical thermal limits and integrate them with natural heat exposure regimes. Here we propose the thermal load sensitivity (TLS) framework, which integrates biophysical principles for quantifying exposure with physiological principles of the dynamics of damage and repair processes in driving sublethal impacts on organisms. Building upon the established thermal death time (TDT) model, which integrates both the magnitude and duration of stress, the TLS framework attempts to disentangle the accumulation of damage and subsequent repair processes that alter responses to thermal stress. With the aid of case studies and reproducible simulation examples, we discuss how the TLS framework can be applied to enhance our understanding of the ecology and evolution of heat stress responses. These include assessing thermal sensitivity across diverse taxonomic groups, throughout ontogeny, and for modular organisms, as well as integrating additional stressors in combination with temperature. We identify critical research opportunities, knowledge gaps, and novel ways of integrating physiological measures of thermal sensitivity to improve understanding and predictions of thermal vulnerability at various scales across life.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 7","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70315","citationCount":"0","resultStr":"{\"title\":\"A Framework for Modelling Thermal Load Sensitivity Across Life\",\"authors\":\"Pieter A. Arnold,&nbsp;Daniel W. A. Noble,&nbsp;Adrienne B. Nicotra,&nbsp;Michael R. Kearney,&nbsp;Enrico L. Rezende,&nbsp;Samuel C. Andrew,&nbsp;Verónica F. Briceño,&nbsp;Lauren B. Buckley,&nbsp;Keith A. Christian,&nbsp;Susana Clusella-Trullas,&nbsp;Sonya R. Geange,&nbsp;Lydia K. Guja,&nbsp;Octavio Jiménez Robles,&nbsp;Ben J. Kefford,&nbsp;Vanessa Kellermann,&nbsp;Andrea Leigh,&nbsp;Renée M. Marchin,&nbsp;Karel Mokany,&nbsp;Joanne M. Bennett\",\"doi\":\"10.1111/gcb.70315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forecasts of vulnerability to climate warming require an integrative understanding of how species are exposed to, are damaged by, and recover from thermal stress in natural environments. The sensitivity of species to temperature depends on the frequency, duration, and magnitude of thermal stress. Thus, there is a generally recognized need to move beyond physiological metrics based solely on critical thermal limits and integrate them with natural heat exposure regimes. Here we propose the thermal load sensitivity (TLS) framework, which integrates biophysical principles for quantifying exposure with physiological principles of the dynamics of damage and repair processes in driving sublethal impacts on organisms. Building upon the established thermal death time (TDT) model, which integrates both the magnitude and duration of stress, the TLS framework attempts to disentangle the accumulation of damage and subsequent repair processes that alter responses to thermal stress. With the aid of case studies and reproducible simulation examples, we discuss how the TLS framework can be applied to enhance our understanding of the ecology and evolution of heat stress responses. These include assessing thermal sensitivity across diverse taxonomic groups, throughout ontogeny, and for modular organisms, as well as integrating additional stressors in combination with temperature. We identify critical research opportunities, knowledge gaps, and novel ways of integrating physiological measures of thermal sensitivity to improve understanding and predictions of thermal vulnerability at various scales across life.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 7\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70315\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70315","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

对气候变暖脆弱性的预测需要对物种如何暴露于自然环境中的热应力、受到热应力的破坏以及如何从热应力中恢复有一个综合的理解。物种对温度的敏感性取决于热应力的频率、持续时间和大小。因此,人们普遍认为需要超越仅仅基于临界热极限的生理指标,并将其与自然热暴露制度相结合。在此,我们提出了热负荷敏感性(TLS)框架,该框架将用于量化暴露的生物物理原理与驱动对生物体亚致死影响的损伤和修复过程动力学的生理原理相结合。基于已建立的热死亡时间(TDT)模型,该模型集成了应力的大小和持续时间,TLS框架试图解开损伤的积累和随后的修复过程,这些过程会改变对热应力的反应。借助案例研究和可重复的模拟示例,我们讨论了如何应用TLS框架来增强我们对热应激反应的生态学和进化的理解。这些包括评估不同分类群体、整个个体发育过程和模块化生物的热敏性,以及将额外的压力源与温度结合起来。我们确定了关键的研究机会、知识缺口和整合热敏性生理测量的新方法,以提高对生命中各种尺度的热脆弱性的理解和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Framework for Modelling Thermal Load Sensitivity Across Life

A Framework for Modelling Thermal Load Sensitivity Across Life

Forecasts of vulnerability to climate warming require an integrative understanding of how species are exposed to, are damaged by, and recover from thermal stress in natural environments. The sensitivity of species to temperature depends on the frequency, duration, and magnitude of thermal stress. Thus, there is a generally recognized need to move beyond physiological metrics based solely on critical thermal limits and integrate them with natural heat exposure regimes. Here we propose the thermal load sensitivity (TLS) framework, which integrates biophysical principles for quantifying exposure with physiological principles of the dynamics of damage and repair processes in driving sublethal impacts on organisms. Building upon the established thermal death time (TDT) model, which integrates both the magnitude and duration of stress, the TLS framework attempts to disentangle the accumulation of damage and subsequent repair processes that alter responses to thermal stress. With the aid of case studies and reproducible simulation examples, we discuss how the TLS framework can be applied to enhance our understanding of the ecology and evolution of heat stress responses. These include assessing thermal sensitivity across diverse taxonomic groups, throughout ontogeny, and for modular organisms, as well as integrating additional stressors in combination with temperature. We identify critical research opportunities, knowledge gaps, and novel ways of integrating physiological measures of thermal sensitivity to improve understanding and predictions of thermal vulnerability at various scales across life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信