Dora Čertnerová, Pavel Škaloud, Iva Jadrná, Martin Čertner
{"title":"大基因组与大细胞大小和向更富氮和高纬度环境的生态转移有关","authors":"Dora Čertnerová, Pavel Škaloud, Iva Jadrná, Martin Čertner","doi":"10.1111/jeu.70026","DOIUrl":null,"url":null,"abstract":"<p>The nuclear genome is essential for encoding most of the genes required for cellular processes, but its size alone can alter the characteristics of cells and organisms. Yet, genome size variation and its ecological and evolutionary impacts, particularly in microorganisms, are not well understood. We used flow cytometry to estimate genome size and GC content in 53 evolutionary lineages of the microalgal genus <i>Synura</i> (Chrysophyceae, Stramenopiles). Genome size evolution was reconstructed in a phylogenetic framework using molecular markers. A set of genomic, morphological, and ecogeographic variables characterizing <i>Synura</i> lineages was evaluated and tested as predictors of genome size variation in phylogeny-corrected statistical models. Both genome size and GC content varied widely in <i>Synura</i>, ranging from 0.19 to 3.70 pg of DNA and 34.0% to 49.3%, respectively. Genome size variation was mainly associated with cell size, less with silica scale size, and not with scale ultrastructure. Higher soil nitrogen, higher latitudes, and lower temperatures correlated with larger genomes. Genome size evolution in <i>Synura</i> shows potential dynamism, with increases confined to short terminal branches, indicating lower macroevolutionary stability. Lineages with larger genomes exhibited a narrower range of suitable ecological conditions, possibly due to selection acting deleteriously against larger genomes (and cells).</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"72 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.70026","citationCount":"0","resultStr":"{\"title\":\"Large Genomes Are Associated With Greater Cell Size and Ecological Shift Towards More Nitrogen-Rich and Higher-Latitude Environments in Microalgae of the Genus Synura\",\"authors\":\"Dora Čertnerová, Pavel Škaloud, Iva Jadrná, Martin Čertner\",\"doi\":\"10.1111/jeu.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nuclear genome is essential for encoding most of the genes required for cellular processes, but its size alone can alter the characteristics of cells and organisms. Yet, genome size variation and its ecological and evolutionary impacts, particularly in microorganisms, are not well understood. We used flow cytometry to estimate genome size and GC content in 53 evolutionary lineages of the microalgal genus <i>Synura</i> (Chrysophyceae, Stramenopiles). Genome size evolution was reconstructed in a phylogenetic framework using molecular markers. A set of genomic, morphological, and ecogeographic variables characterizing <i>Synura</i> lineages was evaluated and tested as predictors of genome size variation in phylogeny-corrected statistical models. Both genome size and GC content varied widely in <i>Synura</i>, ranging from 0.19 to 3.70 pg of DNA and 34.0% to 49.3%, respectively. Genome size variation was mainly associated with cell size, less with silica scale size, and not with scale ultrastructure. Higher soil nitrogen, higher latitudes, and lower temperatures correlated with larger genomes. Genome size evolution in <i>Synura</i> shows potential dynamism, with increases confined to short terminal branches, indicating lower macroevolutionary stability. Lineages with larger genomes exhibited a narrower range of suitable ecological conditions, possibly due to selection acting deleteriously against larger genomes (and cells).</p>\",\"PeriodicalId\":15672,\"journal\":{\"name\":\"Journal of Eukaryotic Microbiology\",\"volume\":\"72 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.70026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Eukaryotic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jeu.70026\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.70026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Large Genomes Are Associated With Greater Cell Size and Ecological Shift Towards More Nitrogen-Rich and Higher-Latitude Environments in Microalgae of the Genus Synura
The nuclear genome is essential for encoding most of the genes required for cellular processes, but its size alone can alter the characteristics of cells and organisms. Yet, genome size variation and its ecological and evolutionary impacts, particularly in microorganisms, are not well understood. We used flow cytometry to estimate genome size and GC content in 53 evolutionary lineages of the microalgal genus Synura (Chrysophyceae, Stramenopiles). Genome size evolution was reconstructed in a phylogenetic framework using molecular markers. A set of genomic, morphological, and ecogeographic variables characterizing Synura lineages was evaluated and tested as predictors of genome size variation in phylogeny-corrected statistical models. Both genome size and GC content varied widely in Synura, ranging from 0.19 to 3.70 pg of DNA and 34.0% to 49.3%, respectively. Genome size variation was mainly associated with cell size, less with silica scale size, and not with scale ultrastructure. Higher soil nitrogen, higher latitudes, and lower temperatures correlated with larger genomes. Genome size evolution in Synura shows potential dynamism, with increases confined to short terminal branches, indicating lower macroevolutionary stability. Lineages with larger genomes exhibited a narrower range of suitable ecological conditions, possibly due to selection acting deleteriously against larger genomes (and cells).
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.