Niyou Wang, Veluru Jagadeesh Babu, Namith Rangaswamy, Si Jian Hui, Joshua K, James Thomas Patrick Decourcy Hallinan, Senthil Kumar A, Naresh Kumar
{"title":"镍钛诺在骨科中的应用:临床观察、性能挑战和未来方向","authors":"Niyou Wang, Veluru Jagadeesh Babu, Namith Rangaswamy, Si Jian Hui, Joshua K, James Thomas Patrick Decourcy Hallinan, Senthil Kumar A, Naresh Kumar","doi":"10.1002/jbm.b.35615","DOIUrl":null,"url":null,"abstract":"<p>The increasing prevalence of spinal disorders has spurred continuous innovation in implant design and biomaterials. Among emerging options, Nitinol has gained significant interest due to its unique combination of shape memory effect, superelasticity, and mechanical compatibility with bone tissue. These characteristics make it a promising candidate for spinal implants that support minimally invasive surgery and motion preservation. This review offers a comprehensive overview of Nitinol's clinical applications in orthopedics, with a particular focus on spinal procedures. It explores key material properties, device types, and performance benefits, including reduced stress shielding and improved implant-tissue integration. A wide range of Nitinol-based devices such as screws, plates and rods, nails, artificial discs, staples, and dynamic systems are discussed alongside clinical outcomes and case studies. Emerging directions such as additive manufacturing for patient-specific implants, and smart Nitinol systems with integrated sensing or actuation capabilities are discussed. In addition, challenges in thermal control, manufacturing reproducibility, and evolving regulatory standards are addressed. By synthesizing current advancements and unmet needs, this review highlights the clinical potential of Nitinol implants and outlines future directions for their safe, effective, and scalable integration into orthopedic practice.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35615","citationCount":"0","resultStr":"{\"title\":\"Nitinol in Orthopedic Applications: Clinical Insights, Performance Challenges, and Future Directions\",\"authors\":\"Niyou Wang, Veluru Jagadeesh Babu, Namith Rangaswamy, Si Jian Hui, Joshua K, James Thomas Patrick Decourcy Hallinan, Senthil Kumar A, Naresh Kumar\",\"doi\":\"10.1002/jbm.b.35615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing prevalence of spinal disorders has spurred continuous innovation in implant design and biomaterials. Among emerging options, Nitinol has gained significant interest due to its unique combination of shape memory effect, superelasticity, and mechanical compatibility with bone tissue. These characteristics make it a promising candidate for spinal implants that support minimally invasive surgery and motion preservation. This review offers a comprehensive overview of Nitinol's clinical applications in orthopedics, with a particular focus on spinal procedures. It explores key material properties, device types, and performance benefits, including reduced stress shielding and improved implant-tissue integration. A wide range of Nitinol-based devices such as screws, plates and rods, nails, artificial discs, staples, and dynamic systems are discussed alongside clinical outcomes and case studies. Emerging directions such as additive manufacturing for patient-specific implants, and smart Nitinol systems with integrated sensing or actuation capabilities are discussed. In addition, challenges in thermal control, manufacturing reproducibility, and evolving regulatory standards are addressed. By synthesizing current advancements and unmet needs, this review highlights the clinical potential of Nitinol implants and outlines future directions for their safe, effective, and scalable integration into orthopedic practice.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35615\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35615\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35615","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Nitinol in Orthopedic Applications: Clinical Insights, Performance Challenges, and Future Directions
The increasing prevalence of spinal disorders has spurred continuous innovation in implant design and biomaterials. Among emerging options, Nitinol has gained significant interest due to its unique combination of shape memory effect, superelasticity, and mechanical compatibility with bone tissue. These characteristics make it a promising candidate for spinal implants that support minimally invasive surgery and motion preservation. This review offers a comprehensive overview of Nitinol's clinical applications in orthopedics, with a particular focus on spinal procedures. It explores key material properties, device types, and performance benefits, including reduced stress shielding and improved implant-tissue integration. A wide range of Nitinol-based devices such as screws, plates and rods, nails, artificial discs, staples, and dynamic systems are discussed alongside clinical outcomes and case studies. Emerging directions such as additive manufacturing for patient-specific implants, and smart Nitinol systems with integrated sensing or actuation capabilities are discussed. In addition, challenges in thermal control, manufacturing reproducibility, and evolving regulatory standards are addressed. By synthesizing current advancements and unmet needs, this review highlights the clinical potential of Nitinol implants and outlines future directions for their safe, effective, and scalable integration into orthopedic practice.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.