Louie H. Yang, Elizabeth G. Postema, Heran Arefaine, Fernanda Y. Cohoon, Emma A. Deen, Yvonne L. Durand, Gwendolyn I. Erdosh, Hailey Ma, Courtney N. Mausling, Sarah Solís, Madeline R. Wilson
{"title":"活得快,死得早?昼夜增温对田间毛虫的生长、生存和行为都有影响","authors":"Louie H. Yang, Elizabeth G. Postema, Heran Arefaine, Fernanda Y. Cohoon, Emma A. Deen, Yvonne L. Durand, Gwendolyn I. Erdosh, Hailey Ma, Courtney N. Mausling, Sarah Solís, Madeline R. Wilson","doi":"10.1002/ecy.70150","DOIUrl":null,"url":null,"abstract":"<p>While both daytime and nighttime temperatures are increasing with climate change, few studies have experimentally investigated their differential effects under field conditions. We conducted a factorial field experiment examining how day- and night-warming impact the growth, survivorship, and behavior of cabbage white caterpillars (<i>Pieris rapae</i>). In this experiment, the night-warming only treatment showed the highest rates of caterpillar growth, but also showed the highest mortality, the shortest maximum caterpillar lengths, the least accumulated herbivory, and reduced pupation. Caterpillars in the treatments that were not warmed during the day showed daytime-shifted growth, and caterpillars in the combined day- and night-warming treatment showed strongly night-shifted herbivory. Both biotic (e.g., predation risk) and abiotic (e.g., thermal) factors could have contributed to these results. Broadly, these results show the importance of temperature-mediated behavioral changes in diel activity for caterpillar development and survival. These results also support the emerging hypotheses that periods of reduced activity may be important for successful development, that warmer nighttime conditions could limit a temporal thermal refuge for caterpillars, and that increasing temperatures could increase the likelihood of metabolic meltdown. This experiment also illustrates the value of field studies to provide insights into how ectotherms might respond to ongoing climate change.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70150","citationCount":"0","resultStr":"{\"title\":\"Live fast, die young? Day- and night-warming affect the growth, survivorship, and behavior of caterpillars in the field\",\"authors\":\"Louie H. Yang, Elizabeth G. Postema, Heran Arefaine, Fernanda Y. Cohoon, Emma A. Deen, Yvonne L. Durand, Gwendolyn I. Erdosh, Hailey Ma, Courtney N. Mausling, Sarah Solís, Madeline R. Wilson\",\"doi\":\"10.1002/ecy.70150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While both daytime and nighttime temperatures are increasing with climate change, few studies have experimentally investigated their differential effects under field conditions. We conducted a factorial field experiment examining how day- and night-warming impact the growth, survivorship, and behavior of cabbage white caterpillars (<i>Pieris rapae</i>). In this experiment, the night-warming only treatment showed the highest rates of caterpillar growth, but also showed the highest mortality, the shortest maximum caterpillar lengths, the least accumulated herbivory, and reduced pupation. Caterpillars in the treatments that were not warmed during the day showed daytime-shifted growth, and caterpillars in the combined day- and night-warming treatment showed strongly night-shifted herbivory. Both biotic (e.g., predation risk) and abiotic (e.g., thermal) factors could have contributed to these results. Broadly, these results show the importance of temperature-mediated behavioral changes in diel activity for caterpillar development and survival. These results also support the emerging hypotheses that periods of reduced activity may be important for successful development, that warmer nighttime conditions could limit a temporal thermal refuge for caterpillars, and that increasing temperatures could increase the likelihood of metabolic meltdown. This experiment also illustrates the value of field studies to provide insights into how ectotherms might respond to ongoing climate change.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"106 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70150\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70150","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Live fast, die young? Day- and night-warming affect the growth, survivorship, and behavior of caterpillars in the field
While both daytime and nighttime temperatures are increasing with climate change, few studies have experimentally investigated their differential effects under field conditions. We conducted a factorial field experiment examining how day- and night-warming impact the growth, survivorship, and behavior of cabbage white caterpillars (Pieris rapae). In this experiment, the night-warming only treatment showed the highest rates of caterpillar growth, but also showed the highest mortality, the shortest maximum caterpillar lengths, the least accumulated herbivory, and reduced pupation. Caterpillars in the treatments that were not warmed during the day showed daytime-shifted growth, and caterpillars in the combined day- and night-warming treatment showed strongly night-shifted herbivory. Both biotic (e.g., predation risk) and abiotic (e.g., thermal) factors could have contributed to these results. Broadly, these results show the importance of temperature-mediated behavioral changes in diel activity for caterpillar development and survival. These results also support the emerging hypotheses that periods of reduced activity may be important for successful development, that warmer nighttime conditions could limit a temporal thermal refuge for caterpillars, and that increasing temperatures could increase the likelihood of metabolic meltdown. This experiment also illustrates the value of field studies to provide insights into how ectotherms might respond to ongoing climate change.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.