温度和充电状态对锂离子电池长期存储退化的影响:基于p2d的集成退化分析

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-02 DOI:10.1039/D5RA03735B
Mohammed Asiri, Munthar Kedhim, Vicky Jain, Suhas Ballal, Abhayveer Singh, V. Kavitha, Nargiza Kamolova and Milad Nourizadeh
{"title":"温度和充电状态对锂离子电池长期存储退化的影响:基于p2d的集成退化分析","authors":"Mohammed Asiri, Munthar Kedhim, Vicky Jain, Suhas Ballal, Abhayveer Singh, V. Kavitha, Nargiza Kamolova and Milad Nourizadeh","doi":"10.1039/D5RA03735B","DOIUrl":null,"url":null,"abstract":"<p >This study utilizes a Pseudo-Two-Dimensional (P2D) model to predict calendar aging in LiFePO<small><sub>4</sub></small>/graphite lithium-ion batteries, emphasizing temperature and state-of-charge (SOC) impacts. Implemented in COMSOL Multiphysics, the P2D framework simulates solid electrolyte interphase (SEI) growth and electrolyte conductivity loss, driven by parasitic redox reactions at the electrode–electrolyte interface, modeled using Arrhenius and Tafel kinetics. Validated against experimental data across five temperature–SOC conditions, the P2D model achieves root mean square errors below 0.9. Results show synergistic degradation, with SEI thickness exceeding 300 nm and conductivity loss over 20% after 36 months at 55 °C and 90% SOC. Higher SOCs intensify SEI growth due to electrolyte instability at elevated anode potentials. This P2D-based, chemically grounded approach provides mechanistic insights into storage degradation, enabling optimized battery management and storage strategies to enhance lifespan and reliability for electric vehicles and grid applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 28","pages":" 22576-22586"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03735b?page=search","citationCount":"0","resultStr":"{\"title\":\"Impact of temperature and state-of-charge on long-term storage degradation in lithium-ion batteries: an integrated P2D-based degradation analysis\",\"authors\":\"Mohammed Asiri, Munthar Kedhim, Vicky Jain, Suhas Ballal, Abhayveer Singh, V. Kavitha, Nargiza Kamolova and Milad Nourizadeh\",\"doi\":\"10.1039/D5RA03735B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study utilizes a Pseudo-Two-Dimensional (P2D) model to predict calendar aging in LiFePO<small><sub>4</sub></small>/graphite lithium-ion batteries, emphasizing temperature and state-of-charge (SOC) impacts. Implemented in COMSOL Multiphysics, the P2D framework simulates solid electrolyte interphase (SEI) growth and electrolyte conductivity loss, driven by parasitic redox reactions at the electrode–electrolyte interface, modeled using Arrhenius and Tafel kinetics. Validated against experimental data across five temperature–SOC conditions, the P2D model achieves root mean square errors below 0.9. Results show synergistic degradation, with SEI thickness exceeding 300 nm and conductivity loss over 20% after 36 months at 55 °C and 90% SOC. Higher SOCs intensify SEI growth due to electrolyte instability at elevated anode potentials. This P2D-based, chemically grounded approach provides mechanistic insights into storage degradation, enabling optimized battery management and storage strategies to enhance lifespan and reliability for electric vehicles and grid applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 28\",\"pages\":\" 22576-22586\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03735b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03735b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03735b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用伪二维(P2D)模型预测LiFePO4/石墨锂离子电池的日历老化,强调温度和荷电状态(SOC)的影响。在COMSOL Multiphysics中实现,P2D框架模拟了由电极-电解质界面寄生氧化还原反应驱动的固体电解质界面(SEI)生长和电解质电导率损失,采用Arrhenius和Tafel动力学建模。通过五种温度- soc条件下的实验数据验证,P2D模型的均方根误差低于0.9。结果表明,在55°C和90% SOC条件下,36个月后SEI厚度超过300 nm,电导率损失超过20%。由于阳极电位升高时电解质不稳定,较高的soc会加剧SEI增长。这种基于p2d的化学接地方法提供了对存储退化的机理见解,从而优化了电池管理和存储策略,从而提高了电动汽车和电网应用的使用寿命和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of temperature and state-of-charge on long-term storage degradation in lithium-ion batteries: an integrated P2D-based degradation analysis

Impact of temperature and state-of-charge on long-term storage degradation in lithium-ion batteries: an integrated P2D-based degradation analysis

This study utilizes a Pseudo-Two-Dimensional (P2D) model to predict calendar aging in LiFePO4/graphite lithium-ion batteries, emphasizing temperature and state-of-charge (SOC) impacts. Implemented in COMSOL Multiphysics, the P2D framework simulates solid electrolyte interphase (SEI) growth and electrolyte conductivity loss, driven by parasitic redox reactions at the electrode–electrolyte interface, modeled using Arrhenius and Tafel kinetics. Validated against experimental data across five temperature–SOC conditions, the P2D model achieves root mean square errors below 0.9. Results show synergistic degradation, with SEI thickness exceeding 300 nm and conductivity loss over 20% after 36 months at 55 °C and 90% SOC. Higher SOCs intensify SEI growth due to electrolyte instability at elevated anode potentials. This P2D-based, chemically grounded approach provides mechanistic insights into storage degradation, enabling optimized battery management and storage strategies to enhance lifespan and reliability for electric vehicles and grid applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信