Seungmok Han, Junsoo Ha, Jae Seung Lee, Hyukjoo Lee, Chang Hyun Lee, Kangwoo Cho and Chang Won Yoon
{"title":"在常温下直接电解液态无水氨以连续生产高纯度加压氢气","authors":"Seungmok Han, Junsoo Ha, Jae Seung Lee, Hyukjoo Lee, Chang Hyun Lee, Kangwoo Cho and Chang Won Yoon","doi":"10.1039/D5EY00140D","DOIUrl":null,"url":null,"abstract":"<p >The direct electrolysis of liquid anhydrous ammonia (NH<small><sub>3</sub></small>(l), >99.99% of NH<small><sub>3</sub></small>, free of water and solvent) is demonstrated using a 25 cm<small><sup>2</sup></small> zero-gap electrolyzer, consisting of a Ru/C anode and a Pt/C cathode, with the two electrodes spatially separated by a cation exchange membrane. This system, supplied by NH<small><sub>3</sub></small>(l) and NH<small><sub>4</sub></small>Br as the supporting electrolyte, continuously produces high-purity and pressurized hydrogen (H<small><sub>2</sub></small>, >99.99%, >5.5 bar) at a temperature of 10 °C and a pressure of 6.2 bar, without requiring H<small><sub>2</sub></small>/N<small><sub>2</sub></small> separation and compression processes. The direct NH<small><sub>3</sub></small>(l) electrolyzer exhibits a cell potential of 1.1 V at 0.1 A cm<small><sup>−2</sup></small>, presenting a faradaic efficiency of >99.3% for H<small><sub>2</sub></small> production. The developed system achieves a H<small><sub>2</sub></small> production rate of >18.8 mol-H<small><sub>2</sub></small> g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> at 0.5 A cm<small><sup>−2</sup></small>, which is 4.7-fold higher than the highest H<small><sub>2</sub></small> production rate reported to date for NH<small><sub>3</sub></small>(g) thermolysis at temperatures of over 500 °C.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 694-700"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00140d?page=search","citationCount":"0","resultStr":"{\"title\":\"Direct electrolysis of liquid anhydrous ammonia for continuous production of high-purity, pressurized hydrogen at ambient temperature†\",\"authors\":\"Seungmok Han, Junsoo Ha, Jae Seung Lee, Hyukjoo Lee, Chang Hyun Lee, Kangwoo Cho and Chang Won Yoon\",\"doi\":\"10.1039/D5EY00140D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The direct electrolysis of liquid anhydrous ammonia (NH<small><sub>3</sub></small>(l), >99.99% of NH<small><sub>3</sub></small>, free of water and solvent) is demonstrated using a 25 cm<small><sup>2</sup></small> zero-gap electrolyzer, consisting of a Ru/C anode and a Pt/C cathode, with the two electrodes spatially separated by a cation exchange membrane. This system, supplied by NH<small><sub>3</sub></small>(l) and NH<small><sub>4</sub></small>Br as the supporting electrolyte, continuously produces high-purity and pressurized hydrogen (H<small><sub>2</sub></small>, >99.99%, >5.5 bar) at a temperature of 10 °C and a pressure of 6.2 bar, without requiring H<small><sub>2</sub></small>/N<small><sub>2</sub></small> separation and compression processes. The direct NH<small><sub>3</sub></small>(l) electrolyzer exhibits a cell potential of 1.1 V at 0.1 A cm<small><sup>−2</sup></small>, presenting a faradaic efficiency of >99.3% for H<small><sub>2</sub></small> production. The developed system achieves a H<small><sub>2</sub></small> production rate of >18.8 mol-H<small><sub>2</sub></small> g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> at 0.5 A cm<small><sup>−2</sup></small>, which is 4.7-fold higher than the highest H<small><sub>2</sub></small> production rate reported to date for NH<small><sub>3</sub></small>(g) thermolysis at temperatures of over 500 °C.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 4\",\"pages\":\" 694-700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00140d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00140d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00140d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
用一个25 cm2的零间隙电解槽直接电解液态无水氨(NH3(l), 99.99% NH3,不含水和溶剂),该电解槽由Ru/C阳极和Pt/C阴极组成,两个电极由阳离子交换膜隔开。该系统以NH3(l)和NH4Br为支撑电解质,在温度为10℃,压力为6.2 bar的条件下,无需进行H2/N2分离和压缩过程,即可连续生产高纯加压氢气(H2, >99.99%, >5.5 bar)。直接NH3(l)电解槽在0.1 a cm−2下的电势为1.1 V, H2生成的法拉第效率为99.3%。该系统在0.5 a cm−2条件下的H2产率为18.8 mol-H2 gcat−1 h−1,比迄今为止报道的在500℃以上温度下NH3(g)热解的最高H2产率高4.7倍。
Direct electrolysis of liquid anhydrous ammonia for continuous production of high-purity, pressurized hydrogen at ambient temperature†
The direct electrolysis of liquid anhydrous ammonia (NH3(l), >99.99% of NH3, free of water and solvent) is demonstrated using a 25 cm2 zero-gap electrolyzer, consisting of a Ru/C anode and a Pt/C cathode, with the two electrodes spatially separated by a cation exchange membrane. This system, supplied by NH3(l) and NH4Br as the supporting electrolyte, continuously produces high-purity and pressurized hydrogen (H2, >99.99%, >5.5 bar) at a temperature of 10 °C and a pressure of 6.2 bar, without requiring H2/N2 separation and compression processes. The direct NH3(l) electrolyzer exhibits a cell potential of 1.1 V at 0.1 A cm−2, presenting a faradaic efficiency of >99.3% for H2 production. The developed system achieves a H2 production rate of >18.8 mol-H2 gcat−1 h−1 at 0.5 A cm−2, which is 4.7-fold higher than the highest H2 production rate reported to date for NH3(g) thermolysis at temperatures of over 500 °C.