OFDM、RPDM和ORPDM多载波调制方案的PAPR性能评估

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shaik Basheeruddin Shah;Nazar T. Ali;Goli Srikanth;Ahmed Altunaiji;Dragan I. Olćan
{"title":"OFDM、RPDM和ORPDM多载波调制方案的PAPR性能评估","authors":"Shaik Basheeruddin Shah;Nazar T. Ali;Goli Srikanth;Ahmed Altunaiji;Dragan I. Olćan","doi":"10.1109/OJCOMS.2025.3579725","DOIUrl":null,"url":null,"abstract":"Multicarrier Modulation (MCM) schemes based on Nested Periodic Matrices (NPMs) offer promising solutions to the high Peak-to-Average Power Ratio (PAPR) problem in Orthogonal Frequency Division Multiplexing (OFDM). Among these, Ramanujan Periodic-subspace Division Multiplexing (RPDM) emerges as a candidate and has been analyzed when the number of subcarriers q is an integer power of 2, which represents a small subset of <inline-formula> <tex-math>$\\mathbb {N}$ </tex-math></inline-formula>. Moreover, RPDM’s transformation matrix loses orthogonality for non-integer-power-of-two subcarriers, leading to increased computational complexity. To address these limitations, this work introduces Orthogonal Ramanujan Periodic-subspace Division Multiplexing (ORPDM), an MCM scheme leveraging Orthogonal Ramanujan Bases (ORBs) that retain transformation matrix orthogonality for all <inline-formula> <tex-math>$q\\in \\mathbb {N}$ </tex-math></inline-formula> with an enhanced computational efficiency over RPDM. The PAPR performance of OFDM, RPDM, and ORPDM is comprehensively evaluated across all natural numbers. Our theoretical and numerical analyses reveal: 1) RPDM and ORPDM consistently provide lower PAPR than OFDM; 2) For prime q, RPDM provides the lowest PAPR; 3) For prime power <inline-formula> <tex-math>$(q=p^{m})$ </tex-math></inline-formula>, ORPDM excels for smaller prime powers <inline-formula> <tex-math>$(p\\lt 7)$ </tex-math></inline-formula>, while RPDM is superior when <inline-formula> <tex-math>$p\\geq 7$ </tex-math></inline-formula>; 4) For composite q, if all prime factors are <inline-formula> <tex-math>$\\leq 5$ </tex-math></inline-formula>, ORPDM achieves the best PAPR reduction; if all prime factors are <inline-formula> <tex-math>$\\geq 7$ </tex-math></inline-formula>, RPDM remains optimal. In addition to PAPR, we evaluate and compare spectral efficiency, Out-of-Band (OOB) emissions, and Bit Error Rate (BER) performance across the three MCM schemes.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"5297-5318"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11036771","citationCount":"0","resultStr":"{\"title\":\"PAPR Performance Evaluation of OFDM, RPDM, and ORPDM Multicarrier Modulation Schemes\",\"authors\":\"Shaik Basheeruddin Shah;Nazar T. Ali;Goli Srikanth;Ahmed Altunaiji;Dragan I. Olćan\",\"doi\":\"10.1109/OJCOMS.2025.3579725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multicarrier Modulation (MCM) schemes based on Nested Periodic Matrices (NPMs) offer promising solutions to the high Peak-to-Average Power Ratio (PAPR) problem in Orthogonal Frequency Division Multiplexing (OFDM). Among these, Ramanujan Periodic-subspace Division Multiplexing (RPDM) emerges as a candidate and has been analyzed when the number of subcarriers q is an integer power of 2, which represents a small subset of <inline-formula> <tex-math>$\\\\mathbb {N}$ </tex-math></inline-formula>. Moreover, RPDM’s transformation matrix loses orthogonality for non-integer-power-of-two subcarriers, leading to increased computational complexity. To address these limitations, this work introduces Orthogonal Ramanujan Periodic-subspace Division Multiplexing (ORPDM), an MCM scheme leveraging Orthogonal Ramanujan Bases (ORBs) that retain transformation matrix orthogonality for all <inline-formula> <tex-math>$q\\\\in \\\\mathbb {N}$ </tex-math></inline-formula> with an enhanced computational efficiency over RPDM. The PAPR performance of OFDM, RPDM, and ORPDM is comprehensively evaluated across all natural numbers. Our theoretical and numerical analyses reveal: 1) RPDM and ORPDM consistently provide lower PAPR than OFDM; 2) For prime q, RPDM provides the lowest PAPR; 3) For prime power <inline-formula> <tex-math>$(q=p^{m})$ </tex-math></inline-formula>, ORPDM excels for smaller prime powers <inline-formula> <tex-math>$(p\\\\lt 7)$ </tex-math></inline-formula>, while RPDM is superior when <inline-formula> <tex-math>$p\\\\geq 7$ </tex-math></inline-formula>; 4) For composite q, if all prime factors are <inline-formula> <tex-math>$\\\\leq 5$ </tex-math></inline-formula>, ORPDM achieves the best PAPR reduction; if all prime factors are <inline-formula> <tex-math>$\\\\geq 7$ </tex-math></inline-formula>, RPDM remains optimal. In addition to PAPR, we evaluate and compare spectral efficiency, Out-of-Band (OOB) emissions, and Bit Error Rate (BER) performance across the three MCM schemes.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"5297-5318\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11036771\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11036771/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11036771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于嵌套周期矩阵(npm)的多载波调制(MCM)方案为解决正交频分复用(OFDM)中峰值平均功率比(PAPR)过高的问题提供了很好的解决方案。其中,Ramanujan周期子空间分割复用(RPDM)作为候选方案出现,并分析了子载波数q为2的整数幂时的情况,这代表了$\mathbb {N}$的一个小子集。此外,RPDM的变换矩阵对于非整数次幂的子载波失去正交性,导致计算复杂度增加。为了解决这些限制,本工作引入了正交拉马努金周期子空间分割复用(ORPDM),这是一种利用正交拉马努金基(orb)的MCM方案,它保留了所有$q\in \mathbb {N}$的变换矩阵正交性,并且比RPDM具有更高的计算效率。OFDM、RPDM和ORPDM的PAPR性能在所有自然数上进行了综合评估。理论分析和数值分析表明:1)RPDM和ORPDM始终比OFDM提供更低的PAPR;2)对于素数q, RPDM的PAPR最小;3)对于素数幂$(q=p^{m})$, ORPDM在较小的素数幂$(p\lt 7)$时优于ORPDM,在$p\geq 7$时优于RPDM;4)对于复合q,当所有素数因子均为$\leq 5$时,ORPDM降低PAPR效果最佳;如果所有的主要因素都是$\geq 7$, RPDM仍然是最优的。除了PAPR,我们还评估和比较了三种MCM方案的频谱效率、带外(OOB)发射和误码率(BER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PAPR Performance Evaluation of OFDM, RPDM, and ORPDM Multicarrier Modulation Schemes
Multicarrier Modulation (MCM) schemes based on Nested Periodic Matrices (NPMs) offer promising solutions to the high Peak-to-Average Power Ratio (PAPR) problem in Orthogonal Frequency Division Multiplexing (OFDM). Among these, Ramanujan Periodic-subspace Division Multiplexing (RPDM) emerges as a candidate and has been analyzed when the number of subcarriers q is an integer power of 2, which represents a small subset of $\mathbb {N}$ . Moreover, RPDM’s transformation matrix loses orthogonality for non-integer-power-of-two subcarriers, leading to increased computational complexity. To address these limitations, this work introduces Orthogonal Ramanujan Periodic-subspace Division Multiplexing (ORPDM), an MCM scheme leveraging Orthogonal Ramanujan Bases (ORBs) that retain transformation matrix orthogonality for all $q\in \mathbb {N}$ with an enhanced computational efficiency over RPDM. The PAPR performance of OFDM, RPDM, and ORPDM is comprehensively evaluated across all natural numbers. Our theoretical and numerical analyses reveal: 1) RPDM and ORPDM consistently provide lower PAPR than OFDM; 2) For prime q, RPDM provides the lowest PAPR; 3) For prime power $(q=p^{m})$ , ORPDM excels for smaller prime powers $(p\lt 7)$ , while RPDM is superior when $p\geq 7$ ; 4) For composite q, if all prime factors are $\leq 5$ , ORPDM achieves the best PAPR reduction; if all prime factors are $\geq 7$ , RPDM remains optimal. In addition to PAPR, we evaluate and compare spectral efficiency, Out-of-Band (OOB) emissions, and Bit Error Rate (BER) performance across the three MCM schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信