{"title":"研究锂离子电池组的生命周期成本、环境和社会影响","authors":"Antonella Accardo;Gaia Gentilucci;Luca Pontone;Ezio Spessa","doi":"10.1109/OJVT.2025.3579221","DOIUrl":null,"url":null,"abstract":"This study evaluates the environmental, economic, and social impacts of the life cycle of a battery pack for automotive applications. The analysis employs Life Cycle Assessment (LCA) for environmental assessment, Life Cycle Costing (LCC) for economic assessment, and Social Life Cycle Assessment (S-LCA) for social impact analysis. Key locations of non-European raw material extraction and refining are considered for the supply chain. Instead, European countries are considered the final destination for battery pack manufacturing and assembly, use, and End-of-Life (EoL). For the use and EoL phases, three scenarios are analyzed. The LCA results indicate that greenhouse gas emissions vary from 77.2 kg CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> -eq/kWh to 80.7 kg CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>-eq/kWh across the evaluated scenarios. Similarly, the economic assessment estimates LCCs between 77.7 EUR/kWh and 79.4 EUR/kWh, depending on the scenario. The S-LCA results highlight significant risks related to fair pay across numerous countries during the raw material extraction phase, particularly for cobalt (Democratic Republic of the Congo), manganese (South Africa), nickel (Australia), lithium (Australia), and graphite (China). In addition, the score for health and safety concerns presents high risks associated with cobalt, manganese, and nickel mining. In contrast, no significant critical social impacts are found for the use and EoL phases.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1698-1709"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11031181","citationCount":"0","resultStr":"{\"title\":\"Investigating Life Cycle Cost, Environmental and Social Impacts of a Lithium–Ion Battery Pack\",\"authors\":\"Antonella Accardo;Gaia Gentilucci;Luca Pontone;Ezio Spessa\",\"doi\":\"10.1109/OJVT.2025.3579221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the environmental, economic, and social impacts of the life cycle of a battery pack for automotive applications. The analysis employs Life Cycle Assessment (LCA) for environmental assessment, Life Cycle Costing (LCC) for economic assessment, and Social Life Cycle Assessment (S-LCA) for social impact analysis. Key locations of non-European raw material extraction and refining are considered for the supply chain. Instead, European countries are considered the final destination for battery pack manufacturing and assembly, use, and End-of-Life (EoL). For the use and EoL phases, three scenarios are analyzed. The LCA results indicate that greenhouse gas emissions vary from 77.2 kg CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> -eq/kWh to 80.7 kg CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>-eq/kWh across the evaluated scenarios. Similarly, the economic assessment estimates LCCs between 77.7 EUR/kWh and 79.4 EUR/kWh, depending on the scenario. The S-LCA results highlight significant risks related to fair pay across numerous countries during the raw material extraction phase, particularly for cobalt (Democratic Republic of the Congo), manganese (South Africa), nickel (Australia), lithium (Australia), and graphite (China). In addition, the score for health and safety concerns presents high risks associated with cobalt, manganese, and nickel mining. In contrast, no significant critical social impacts are found for the use and EoL phases.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"1698-1709\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11031181\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11031181/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11031181/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究评估了汽车用电池组生命周期对环境、经济和社会的影响。环境评价采用生命周期评价法(LCA),经济评价采用生命周期成本法(LCC),社会影响分析采用社会生命周期评价法(S-LCA)。在供应链中考虑了非欧洲原材料提取和精炼的关键地点。相反,欧洲国家被认为是电池组制造、组装、使用和报废(EoL)的最终目的地。对于使用和EoL阶段,分析了三种场景。LCA结果表明,在评估情景中,温室气体排放量从77.2 kg CO$ $ bbb $ $-eq/kWh到80.7 kg CO$ $ bbb $-eq/kWh不等。同样,经济评估估计lcc在77.7欧元/千瓦时和79.4欧元/千瓦时之间,具体取决于场景。S-LCA结果强调了许多国家在原材料开采阶段与公平薪酬相关的重大风险,特别是钴(刚果民主共和国)、锰(南非)、镍(澳大利亚)、锂(澳大利亚)和石墨(中国)。此外,健康和安全问题得分表明,钴、锰和镍的开采存在高风险。相比之下,在使用和EoL阶段没有发现显著的关键社会影响。
Investigating Life Cycle Cost, Environmental and Social Impacts of a Lithium–Ion Battery Pack
This study evaluates the environmental, economic, and social impacts of the life cycle of a battery pack for automotive applications. The analysis employs Life Cycle Assessment (LCA) for environmental assessment, Life Cycle Costing (LCC) for economic assessment, and Social Life Cycle Assessment (S-LCA) for social impact analysis. Key locations of non-European raw material extraction and refining are considered for the supply chain. Instead, European countries are considered the final destination for battery pack manufacturing and assembly, use, and End-of-Life (EoL). For the use and EoL phases, three scenarios are analyzed. The LCA results indicate that greenhouse gas emissions vary from 77.2 kg CO$_{2}$ -eq/kWh to 80.7 kg CO$_{2}$-eq/kWh across the evaluated scenarios. Similarly, the economic assessment estimates LCCs between 77.7 EUR/kWh and 79.4 EUR/kWh, depending on the scenario. The S-LCA results highlight significant risks related to fair pay across numerous countries during the raw material extraction phase, particularly for cobalt (Democratic Republic of the Congo), manganese (South Africa), nickel (Australia), lithium (Australia), and graphite (China). In addition, the score for health and safety concerns presents high risks associated with cobalt, manganese, and nickel mining. In contrast, no significant critical social impacts are found for the use and EoL phases.