通过MnCdS/NiSe异质结增强光催化制氢:促进水解离和电子空穴分离的协同效应

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Tuo Guo , Chengwei Wang , Li Chen , Guojing Hu , Jiaxin Liu , Guangmin Ren , Qingjie Guo
{"title":"通过MnCdS/NiSe异质结增强光催化制氢:促进水解离和电子空穴分离的协同效应","authors":"Tuo Guo ,&nbsp;Chengwei Wang ,&nbsp;Li Chen ,&nbsp;Guojing Hu ,&nbsp;Jiaxin Liu ,&nbsp;Guangmin Ren ,&nbsp;Qingjie Guo","doi":"10.1016/j.compositesb.2025.112766","DOIUrl":null,"url":null,"abstract":"<div><div>The efficiency enhancement of photocatalytic hydrogen evolution reaction (HER) fundamentally relies on accelerating photogenerated charge separation and optimizing water adsorption-activation processes to generate reactive hydrogen species (H∗). The mechanistic understanding of interfacial water dissociation dynamics, particularly the synergistic effects of adsorption, activation, and proton transfer, remains critically underexplored. Herein, we demonstrate an innovative heterojunction system through rational design of non-stoichiometric Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se co-catalysts anchored onto Mn<sub>0</sub><sub>·</sub><sub>4</sub>Cd<sub>0</sub><sub>·</sub><sub>6</sub>S (MCS) solid solutions. The optimized Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se/MCS hybrid achieves an exceptional HER rate of 42.5 mmol/g/h under visible light, representing a 3.34-fold enhancement over pristine MCS. Combined experimental characterization and DFT calculations reveal that the work function difference drives directional electron transfer from MCS to Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se, while coordinatively Ni sites preferentially adsorb and dissociate H<sub>2</sub>O molecules through optimized d-band positioning. Crucially, the metastable Ni-Se configuration regulates the adsorption/desorption energetics of key intermediates (H∗, OH∗), establishing a dual-functional platform that simultaneously enhances charge separation efficiency and lowers the water dissociation energy barrier. This work provides atomic-level insights into interfacial water activation mechanisms and establishes fundamental guidelines for designing multifunctional co-catalysts in solar-driven hydrogen production systems.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112766"},"PeriodicalIF":12.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic hydrogen production via MnCdS/NiSe heterojunctions: A synergistic effect of promoting water dissociation and electron - Hole separation\",\"authors\":\"Tuo Guo ,&nbsp;Chengwei Wang ,&nbsp;Li Chen ,&nbsp;Guojing Hu ,&nbsp;Jiaxin Liu ,&nbsp;Guangmin Ren ,&nbsp;Qingjie Guo\",\"doi\":\"10.1016/j.compositesb.2025.112766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficiency enhancement of photocatalytic hydrogen evolution reaction (HER) fundamentally relies on accelerating photogenerated charge separation and optimizing water adsorption-activation processes to generate reactive hydrogen species (H∗). The mechanistic understanding of interfacial water dissociation dynamics, particularly the synergistic effects of adsorption, activation, and proton transfer, remains critically underexplored. Herein, we demonstrate an innovative heterojunction system through rational design of non-stoichiometric Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se co-catalysts anchored onto Mn<sub>0</sub><sub>·</sub><sub>4</sub>Cd<sub>0</sub><sub>·</sub><sub>6</sub>S (MCS) solid solutions. The optimized Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se/MCS hybrid achieves an exceptional HER rate of 42.5 mmol/g/h under visible light, representing a 3.34-fold enhancement over pristine MCS. Combined experimental characterization and DFT calculations reveal that the work function difference drives directional electron transfer from MCS to Ni<sub>0</sub><sub>·</sub><sub>85</sub>Se, while coordinatively Ni sites preferentially adsorb and dissociate H<sub>2</sub>O molecules through optimized d-band positioning. Crucially, the metastable Ni-Se configuration regulates the adsorption/desorption energetics of key intermediates (H∗, OH∗), establishing a dual-functional platform that simultaneously enhances charge separation efficiency and lowers the water dissociation energy barrier. This work provides atomic-level insights into interfacial water activation mechanisms and establishes fundamental guidelines for designing multifunctional co-catalysts in solar-driven hydrogen production systems.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"305 \",\"pages\":\"Article 112766\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825006729\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825006729","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化析氢反应(HER)效率的提高从根本上依赖于加速光生电荷分离和优化水吸附活化过程以产生活性氢(H *)。对界面水解离动力学的机理理解,特别是吸附、活化和质子转移的协同效应,仍有待深入研究。在此,我们通过合理设计固定在Mn0·4Cd0·6S (MCS)固溶体上的非化学计量Ni0·85Se共催化剂,展示了一个创新的异质结体系。优化后的Ni0·85Se/MCS在可见光下的HER率达到了42.5 mmol/g/h,比原始MCS提高了3.34倍。结合实验表征和DFT计算表明,功函数差驱动电子从MCS向Ni0·85Se的定向转移,而协同Ni位点通过优化的d波段定位优先吸附和解离H2O分子。重要的是,亚稳的Ni-Se结构调节了关键中间体(H *, OH *)的吸附/解吸能量,建立了一个双重功能平台,同时提高了电荷分离效率并降低了水解离能垒。这项工作为界面水活化机制提供了原子水平的见解,并为设计太阳能驱动制氢系统中的多功能共催化剂建立了基本指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced photocatalytic hydrogen production via MnCdS/NiSe heterojunctions: A synergistic effect of promoting water dissociation and electron - Hole separation

Enhanced photocatalytic hydrogen production via MnCdS/NiSe heterojunctions: A synergistic effect of promoting water dissociation and electron - Hole separation
The efficiency enhancement of photocatalytic hydrogen evolution reaction (HER) fundamentally relies on accelerating photogenerated charge separation and optimizing water adsorption-activation processes to generate reactive hydrogen species (H∗). The mechanistic understanding of interfacial water dissociation dynamics, particularly the synergistic effects of adsorption, activation, and proton transfer, remains critically underexplored. Herein, we demonstrate an innovative heterojunction system through rational design of non-stoichiometric Ni0·85Se co-catalysts anchored onto Mn0·4Cd0·6S (MCS) solid solutions. The optimized Ni0·85Se/MCS hybrid achieves an exceptional HER rate of 42.5 mmol/g/h under visible light, representing a 3.34-fold enhancement over pristine MCS. Combined experimental characterization and DFT calculations reveal that the work function difference drives directional electron transfer from MCS to Ni0·85Se, while coordinatively Ni sites preferentially adsorb and dissociate H2O molecules through optimized d-band positioning. Crucially, the metastable Ni-Se configuration regulates the adsorption/desorption energetics of key intermediates (H∗, OH∗), establishing a dual-functional platform that simultaneously enhances charge separation efficiency and lowers the water dissociation energy barrier. This work provides atomic-level insights into interfacial water activation mechanisms and establishes fundamental guidelines for designing multifunctional co-catalysts in solar-driven hydrogen production systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信