基于薄膜铌酸锂(TFLN)的多波段干扰功率分配器

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Jia Li , Lei Wang , Ke Li , Zhiyuan Li , Chen Zhang
{"title":"基于薄膜铌酸锂(TFLN)的多波段干扰功率分配器","authors":"Jia Li ,&nbsp;Lei Wang ,&nbsp;Ke Li ,&nbsp;Zhiyuan Li ,&nbsp;Chen Zhang","doi":"10.1016/j.optcom.2025.132169","DOIUrl":null,"url":null,"abstract":"<div><div>This article leverages thin-film lithium niobate (TFLN) with low dispersion material properties and the order selection in self-imaging effect by critical dimension optimization to reduce the wavelength sensitivity of multimode interference (MMI) power splitters. We experimentally demonstrated two types of multi-band 3 dB 1 × 2 MMI power splitters: the dual-band device achieving synchronous operation in both O-band (1260–1360 nm) and U-band (1620–1650 nm), and the ultra-broadband device covering the entire communication band from 1260 nm to 1675 nm. The fabrication processing of the devices is compatible with wafer-level mass production technology. The dual-band MMI achieves excess loss (EL) ≤ 1.8 dB and imbalance (IM) ≤ 0.33 dB in the O-band, while demonstrating EL ≤ 0.42 dB and IM ≤ 0.24 dB in the U-band. The ultra-broadband one maintains EL below 0.38 dB across 1240–1650 nm, achieving a bandwidth coverage of 410 nm. This research successfully addresses the longstanding challenge of combined multi-band operation, low-loss, and manufacturing compatibility in traditional material platform, while providing critical technological underpinnings for next-generation high-capacity optical communications and coordinated multi-band transmission architectures.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"591 ","pages":"Article 132169"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin-Film Lithium Niobate (TFLN)-based multimode interference power splitter for multi-band operation\",\"authors\":\"Jia Li ,&nbsp;Lei Wang ,&nbsp;Ke Li ,&nbsp;Zhiyuan Li ,&nbsp;Chen Zhang\",\"doi\":\"10.1016/j.optcom.2025.132169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article leverages thin-film lithium niobate (TFLN) with low dispersion material properties and the order selection in self-imaging effect by critical dimension optimization to reduce the wavelength sensitivity of multimode interference (MMI) power splitters. We experimentally demonstrated two types of multi-band 3 dB 1 × 2 MMI power splitters: the dual-band device achieving synchronous operation in both O-band (1260–1360 nm) and U-band (1620–1650 nm), and the ultra-broadband device covering the entire communication band from 1260 nm to 1675 nm. The fabrication processing of the devices is compatible with wafer-level mass production technology. The dual-band MMI achieves excess loss (EL) ≤ 1.8 dB and imbalance (IM) ≤ 0.33 dB in the O-band, while demonstrating EL ≤ 0.42 dB and IM ≤ 0.24 dB in the U-band. The ultra-broadband one maintains EL below 0.38 dB across 1240–1650 nm, achieving a bandwidth coverage of 410 nm. This research successfully addresses the longstanding challenge of combined multi-band operation, low-loss, and manufacturing compatibility in traditional material platform, while providing critical technological underpinnings for next-generation high-capacity optical communications and coordinated multi-band transmission architectures.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"591 \",\"pages\":\"Article 132169\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825006972\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825006972","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用薄膜铌酸锂(TFLN)的低色散材料特性和自成像效应的关键尺寸优化中的阶次选择来降低多模干涉(MMI)功率分路器的波长灵敏度。实验展示了两种多频段3db 1 × 2 MMI功率分路器:在o波段(1260 ~ 1360 nm)和u波段(1620 ~ 1650 nm)实现同步工作的双频器件,以及覆盖1260 ~ 1675 nm整个通信频段的超宽带器件。器件的制造工艺与晶圆级量产技术兼容。双频MMI在o波段实现了过量损耗(EL)≤1.8 dB和不平衡(IM)≤0.33 dB,在u波段实现了EL≤0.42 dB和IM≤0.24 dB。超宽带天线在1240-1650 nm范围内保持EL低于0.38 dB,实现410 nm的带宽覆盖。该研究成功解决了传统材料平台中组合多频段运行、低损耗和制造兼容性的长期挑战,同时为下一代高容量光通信和协调多频段传输架构提供了关键技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thin-Film Lithium Niobate (TFLN)-based multimode interference power splitter for multi-band operation
This article leverages thin-film lithium niobate (TFLN) with low dispersion material properties and the order selection in self-imaging effect by critical dimension optimization to reduce the wavelength sensitivity of multimode interference (MMI) power splitters. We experimentally demonstrated two types of multi-band 3 dB 1 × 2 MMI power splitters: the dual-band device achieving synchronous operation in both O-band (1260–1360 nm) and U-band (1620–1650 nm), and the ultra-broadband device covering the entire communication band from 1260 nm to 1675 nm. The fabrication processing of the devices is compatible with wafer-level mass production technology. The dual-band MMI achieves excess loss (EL) ≤ 1.8 dB and imbalance (IM) ≤ 0.33 dB in the O-band, while demonstrating EL ≤ 0.42 dB and IM ≤ 0.24 dB in the U-band. The ultra-broadband one maintains EL below 0.38 dB across 1240–1650 nm, achieving a bandwidth coverage of 410 nm. This research successfully addresses the longstanding challenge of combined multi-band operation, low-loss, and manufacturing compatibility in traditional material platform, while providing critical technological underpinnings for next-generation high-capacity optical communications and coordinated multi-band transmission architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信