{"title":"一种廉价的微藻培养实时最优控制装置:模拟和实验结果","authors":"Jesús Miguel Zamudio Lara , Laurent Dewasme , Alain Vande Wouwer","doi":"10.1016/j.bej.2025.109833","DOIUrl":null,"url":null,"abstract":"<div><div>Model-free extremum seeking (ES) has become a popular dynamic optimization strategy as it avoids the time- and resource-consuming task of developing a process model and identifying its parameters. This study explores the possibility of developing an ES control strategy for continuous cultures of micro-algae using minimum investment and, in particular, exploiting a simple “in-house” RGB sensor for biomass concentration. Besides the action on the dilution rate, variation in the incident light is also considered, and the lower sensitivity of the productivity with respect to this input is tackled by a Newton approach where the second-order information is inferred from an adaptive Hammerstein model included in the ES scheme. The setup is validated in simulation and experimental studies, demonstrating the strategy’s good performance. Initialization is a critical factor to ensure fast convergence, and, to ensure robustness, bounds on the Hessian estimates have to be imposed.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"222 ","pages":"Article 109833"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cheap real-time optimal control setup for microalgae cultures: Simulation and experimental results\",\"authors\":\"Jesús Miguel Zamudio Lara , Laurent Dewasme , Alain Vande Wouwer\",\"doi\":\"10.1016/j.bej.2025.109833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Model-free extremum seeking (ES) has become a popular dynamic optimization strategy as it avoids the time- and resource-consuming task of developing a process model and identifying its parameters. This study explores the possibility of developing an ES control strategy for continuous cultures of micro-algae using minimum investment and, in particular, exploiting a simple “in-house” RGB sensor for biomass concentration. Besides the action on the dilution rate, variation in the incident light is also considered, and the lower sensitivity of the productivity with respect to this input is tackled by a Newton approach where the second-order information is inferred from an adaptive Hammerstein model included in the ES scheme. The setup is validated in simulation and experimental studies, demonstrating the strategy’s good performance. Initialization is a critical factor to ensure fast convergence, and, to ensure robustness, bounds on the Hessian estimates have to be imposed.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"222 \",\"pages\":\"Article 109833\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X25002074\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25002074","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A cheap real-time optimal control setup for microalgae cultures: Simulation and experimental results
Model-free extremum seeking (ES) has become a popular dynamic optimization strategy as it avoids the time- and resource-consuming task of developing a process model and identifying its parameters. This study explores the possibility of developing an ES control strategy for continuous cultures of micro-algae using minimum investment and, in particular, exploiting a simple “in-house” RGB sensor for biomass concentration. Besides the action on the dilution rate, variation in the incident light is also considered, and the lower sensitivity of the productivity with respect to this input is tackled by a Newton approach where the second-order information is inferred from an adaptive Hammerstein model included in the ES scheme. The setup is validated in simulation and experimental studies, demonstrating the strategy’s good performance. Initialization is a critical factor to ensure fast convergence, and, to ensure robustness, bounds on the Hessian estimates have to be imposed.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.