患者来源的类器官:促进肺癌中生物活性天然化合物的研究

Xiao Chen , Xian Lin
{"title":"患者来源的类器官:促进肺癌中生物活性天然化合物的研究","authors":"Xiao Chen ,&nbsp;Xian Lin","doi":"10.1016/j.jhip.2025.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer, the leading cause of cancer-related deaths, demands innovative models for therapy development. Bioactive natural compounds, with their structural diversity and historical therapeutic significance, remain pivotal in drug discovery for combating lung malignancies. Patient-derived organoids (PDOs) surpass conventional models by preserving tumor heterogeneity, molecular profiles, and tumor microenvironment (TME) dynamics, enabling accurate drug response prediction and personalized therapy design. Recent studies leveraging lung cancer PDOs have validated several plant-derived agents for their tumor-suppressive effects, potential for chemosensitivity enhancement, and subtype-specific efficacy. Advanced co-culture systems incorporating TME components have improved preclinical-to-clinical translatability. The technological integration of bioengineered platforms (e.g., microfluidic systems, 3D bioprinting) and artificial intelligence has further enhanced high-throughput screening and clinical correlation of drug responses. Although lung cancer PDOs exhibit inherent limitations, these advancements establish PDOs as important tools for evaluating the efficacy-toxicity profiles of bioactive natural compounds and advancing precision oncology in lung cancer.</div></div>","PeriodicalId":100787,"journal":{"name":"Journal of Holistic Integrative Pharmacy","volume":"6 2","pages":"Pages 204-208"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patient-derived organoids: Advancing research on bioactive natural compounds in lung cancer\",\"authors\":\"Xiao Chen ,&nbsp;Xian Lin\",\"doi\":\"10.1016/j.jhip.2025.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lung cancer, the leading cause of cancer-related deaths, demands innovative models for therapy development. Bioactive natural compounds, with their structural diversity and historical therapeutic significance, remain pivotal in drug discovery for combating lung malignancies. Patient-derived organoids (PDOs) surpass conventional models by preserving tumor heterogeneity, molecular profiles, and tumor microenvironment (TME) dynamics, enabling accurate drug response prediction and personalized therapy design. Recent studies leveraging lung cancer PDOs have validated several plant-derived agents for their tumor-suppressive effects, potential for chemosensitivity enhancement, and subtype-specific efficacy. Advanced co-culture systems incorporating TME components have improved preclinical-to-clinical translatability. The technological integration of bioengineered platforms (e.g., microfluidic systems, 3D bioprinting) and artificial intelligence has further enhanced high-throughput screening and clinical correlation of drug responses. Although lung cancer PDOs exhibit inherent limitations, these advancements establish PDOs as important tools for evaluating the efficacy-toxicity profiles of bioactive natural compounds and advancing precision oncology in lung cancer.</div></div>\",\"PeriodicalId\":100787,\"journal\":{\"name\":\"Journal of Holistic Integrative Pharmacy\",\"volume\":\"6 2\",\"pages\":\"Pages 204-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Holistic Integrative Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2707368825000299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Holistic Integrative Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2707368825000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是癌症相关死亡的主要原因,需要创新的治疗发展模式。具有生物活性的天然化合物,其结构多样性和历史治疗意义,仍然是对抗肺部恶性肿瘤的药物发现的关键。患者源性类器官(PDOs)通过保留肿瘤异质性、分子特征和肿瘤微环境(TME)动力学,实现准确的药物反应预测和个性化治疗设计,超越了传统模型。最近利用肺癌PDOs的研究已经证实了几种植物源药物的肿瘤抑制作用,潜在的化学敏感性增强和亚型特异性功效。包含TME成分的先进共培养系统提高了临床前到临床的可翻译性。生物工程平台(如微流控系统、生物3D打印)与人工智能的技术融合,进一步增强了药物反应的高通量筛选和临床相关性。尽管肺癌pdo表现出固有的局限性,但这些进展使pdo成为评估生物活性天然化合物的药效-毒性谱和推进肺癌精确肿瘤学的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient-derived organoids: Advancing research on bioactive natural compounds in lung cancer
Lung cancer, the leading cause of cancer-related deaths, demands innovative models for therapy development. Bioactive natural compounds, with their structural diversity and historical therapeutic significance, remain pivotal in drug discovery for combating lung malignancies. Patient-derived organoids (PDOs) surpass conventional models by preserving tumor heterogeneity, molecular profiles, and tumor microenvironment (TME) dynamics, enabling accurate drug response prediction and personalized therapy design. Recent studies leveraging lung cancer PDOs have validated several plant-derived agents for their tumor-suppressive effects, potential for chemosensitivity enhancement, and subtype-specific efficacy. Advanced co-culture systems incorporating TME components have improved preclinical-to-clinical translatability. The technological integration of bioengineered platforms (e.g., microfluidic systems, 3D bioprinting) and artificial intelligence has further enhanced high-throughput screening and clinical correlation of drug responses. Although lung cancer PDOs exhibit inherent limitations, these advancements establish PDOs as important tools for evaluating the efficacy-toxicity profiles of bioactive natural compounds and advancing precision oncology in lung cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信