{"title":"参数一阶代数微分方程的有理解","authors":"Sebastian Falkensteiner , J. Rafael Sendra","doi":"10.1016/j.bulsci.2025.103694","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we give an algorithm for finding general rational solutions of a given first-order ODE with parametric coefficients that occur rationally. We present an analysis, complete modulo Hilbert's irreducibility problem, of the existence of rational solutions of the differential equation, with parametric coefficients, when the parameters are specialized.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103694"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational solutions of parametric first-order algebraic differential equations\",\"authors\":\"Sebastian Falkensteiner , J. Rafael Sendra\",\"doi\":\"10.1016/j.bulsci.2025.103694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we give an algorithm for finding general rational solutions of a given first-order ODE with parametric coefficients that occur rationally. We present an analysis, complete modulo Hilbert's irreducibility problem, of the existence of rational solutions of the differential equation, with parametric coefficients, when the parameters are specialized.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103694\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001204\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001204","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Rational solutions of parametric first-order algebraic differential equations
In this paper, we give an algorithm for finding general rational solutions of a given first-order ODE with parametric coefficients that occur rationally. We present an analysis, complete modulo Hilbert's irreducibility problem, of the existence of rational solutions of the differential equation, with parametric coefficients, when the parameters are specialized.