{"title":"项有界时Sylvester波的多项式时间算法","authors":"Guoce Xin , Chen Zhang","doi":"10.1016/j.aam.2025.102931","DOIUrl":null,"url":null,"abstract":"<div><div>Sylvester's denumerant <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> is a quantity that counts the number of nonnegative integer solutions to the equation <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>t</mi></math></span>, where <span><math><mi>a</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is a sequence of positive integers with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We present a polynomial time algorithm in <em>N</em> for computing <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> when <strong><em>a</em></strong> is bounded and <em>t</em> is a parameter. The proposed algorithm is rooted in the use of cyclotomic polynomials and builds upon recent results by Xin-Zhang-Zhang on the efficient computation of generalized Todd polynomials. The algorithm has been implemented in <span>Maple</span> under the name <span>Cyc-Denum</span> and demonstrates superior performance when <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>500</mn></math></span> compared to Sills-Zeilberger's <span>Maple</span> package <span>PARTITIONS</span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102931"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polynomial time algorithm for Sylvester waves when entries are bounded\",\"authors\":\"Guoce Xin , Chen Zhang\",\"doi\":\"10.1016/j.aam.2025.102931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sylvester's denumerant <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> is a quantity that counts the number of nonnegative integer solutions to the equation <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>t</mi></math></span>, where <span><math><mi>a</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is a sequence of positive integers with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We present a polynomial time algorithm in <em>N</em> for computing <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> when <strong><em>a</em></strong> is bounded and <em>t</em> is a parameter. The proposed algorithm is rooted in the use of cyclotomic polynomials and builds upon recent results by Xin-Zhang-Zhang on the efficient computation of generalized Todd polynomials. The algorithm has been implemented in <span>Maple</span> under the name <span>Cyc-Denum</span> and demonstrates superior performance when <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>500</mn></math></span> compared to Sills-Zeilberger's <span>Maple</span> package <span>PARTITIONS</span>.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"170 \",\"pages\":\"Article 102931\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000934\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000934","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A polynomial time algorithm for Sylvester waves when entries are bounded
Sylvester's denumerant is a quantity that counts the number of nonnegative integer solutions to the equation , where is a sequence of positive integers with . We present a polynomial time algorithm in N for computing when a is bounded and t is a parameter. The proposed algorithm is rooted in the use of cyclotomic polynomials and builds upon recent results by Xin-Zhang-Zhang on the efficient computation of generalized Todd polynomials. The algorithm has been implemented in Maple under the name Cyc-Denum and demonstrates superior performance when compared to Sills-Zeilberger's Maple package PARTITIONS.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.