{"title":"一种应用于无环着色的1-平面图上的识别操作","authors":"Qiuyue Tan , Haizhen Qiu , Yiqiao Wang , Kan Wang","doi":"10.1016/j.amc.2025.129614","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a graph operation and gives its applications. Given a 1-plane graph <em>M</em> and its crossing point <em>x</em> formed by two crossing edges <span><math><mi>u</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><mi>v</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, an Identifying Operation with respect to <em>x</em> is defined in two steps: (1) identifying <em>u</em> and <em>v</em> such that <em>x</em> vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change <em>M</em> into its associated plane graph <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Under some conditions, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, where the parameters <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> represent the acyclic-chromatic-number of <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. This generalizes a result established by Yang et al. in 2018.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129614"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An identifying operation on a 1-planar graph with an application to acyclic coloring\",\"authors\":\"Qiuyue Tan , Haizhen Qiu , Yiqiao Wang , Kan Wang\",\"doi\":\"10.1016/j.amc.2025.129614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a graph operation and gives its applications. Given a 1-plane graph <em>M</em> and its crossing point <em>x</em> formed by two crossing edges <span><math><mi>u</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><mi>v</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, an Identifying Operation with respect to <em>x</em> is defined in two steps: (1) identifying <em>u</em> and <em>v</em> such that <em>x</em> vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change <em>M</em> into its associated plane graph <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Under some conditions, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, where the parameters <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> represent the acyclic-chromatic-number of <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. This generalizes a result established by Yang et al. in 2018.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129614\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003406\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003406","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An identifying operation on a 1-planar graph with an application to acyclic coloring
This paper introduces a graph operation and gives its applications. Given a 1-plane graph M and its crossing point x formed by two crossing edges and , an Identifying Operation with respect to x is defined in two steps: (1) identifying u and v such that x vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change M into its associated plane graph . Under some conditions, we show that , where the parameters and represent the acyclic-chromatic-number of M and , respectively. This generalizes a result established by Yang et al. in 2018.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.