一种应用于无环着色的1-平面图上的识别操作

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Qiuyue Tan , Haizhen Qiu , Yiqiao Wang , Kan Wang
{"title":"一种应用于无环着色的1-平面图上的识别操作","authors":"Qiuyue Tan ,&nbsp;Haizhen Qiu ,&nbsp;Yiqiao Wang ,&nbsp;Kan Wang","doi":"10.1016/j.amc.2025.129614","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a graph operation and gives its applications. Given a 1-plane graph <em>M</em> and its crossing point <em>x</em> formed by two crossing edges <span><math><mi>u</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><mi>v</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, an Identifying Operation with respect to <em>x</em> is defined in two steps: (1) identifying <em>u</em> and <em>v</em> such that <em>x</em> vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change <em>M</em> into its associated plane graph <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Under some conditions, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, where the parameters <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> represent the acyclic-chromatic-number of <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. This generalizes a result established by Yang et al. in 2018.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129614"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An identifying operation on a 1-planar graph with an application to acyclic coloring\",\"authors\":\"Qiuyue Tan ,&nbsp;Haizhen Qiu ,&nbsp;Yiqiao Wang ,&nbsp;Kan Wang\",\"doi\":\"10.1016/j.amc.2025.129614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a graph operation and gives its applications. Given a 1-plane graph <em>M</em> and its crossing point <em>x</em> formed by two crossing edges <span><math><mi>u</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><mi>v</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, an Identifying Operation with respect to <em>x</em> is defined in two steps: (1) identifying <em>u</em> and <em>v</em> such that <em>x</em> vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change <em>M</em> into its associated plane graph <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Under some conditions, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, where the parameters <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> represent the acyclic-chromatic-number of <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. This generalizes a result established by Yang et al. in 2018.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129614\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003406\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003406","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种图运算,并给出了它的应用。给定一个单平面图M及其交点x由两条相交边uu ‘和vv ’组成,定义一个关于x的识别操作,分为两步:(1)识别u和v使x消去;(2)删除环路和多边(如果存在)。通过对每个交叉点进行识别运算,将M变换为与其相关联的平面图M。在某些条件下,我们证明了χa(M)≤2χa(M),其中参数χa(M)和χa(M)分别表示M和M的非环色数。这概括了Yang等人在2018年建立的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An identifying operation on a 1-planar graph with an application to acyclic coloring
This paper introduces a graph operation and gives its applications. Given a 1-plane graph M and its crossing point x formed by two crossing edges uu and vv, an Identifying Operation with respect to x is defined in two steps: (1) identifying u and v such that x vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change M into its associated plane graph M. Under some conditions, we show that χa(M)2χa(M), where the parameters χa(M) and χa(M) represent the acyclic-chromatic-number of M and M, respectively. This generalizes a result established by Yang et al. in 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信