具有强金属-载体相互作用的工程核壳结构BaAl2O4覆盖Ni催化剂,用于持久高效的CH4干重整

IF 13.1 1区 化学 Q1 Energy
Qiangqiang Xue , Kang Hui Lim , Zhehao Sun , Binhang Yan , Zongyou Yin , Ange Nzihou , Yujun Wang , Guangsheng Luo , Feng-Shou Xiao , Sibudjing Kawi
{"title":"具有强金属-载体相互作用的工程核壳结构BaAl2O4覆盖Ni催化剂,用于持久高效的CH4干重整","authors":"Qiangqiang Xue ,&nbsp;Kang Hui Lim ,&nbsp;Zhehao Sun ,&nbsp;Binhang Yan ,&nbsp;Zongyou Yin ,&nbsp;Ange Nzihou ,&nbsp;Yujun Wang ,&nbsp;Guangsheng Luo ,&nbsp;Feng-Shou Xiao ,&nbsp;Sibudjing Kawi","doi":"10.1016/j.jechem.2025.06.024","DOIUrl":null,"url":null,"abstract":"<div><div>Dry reforming of methane (DRM) over Ni-based catalysts is an economically reasonable technology for large-scale CO<sub>2</sub> utilization. However, prolonged Ni sintering and carbon deposition reduce the durability and efficiency of DRM, hindering its engineering application. Herein, we propose a facile approach by combining continuous microscale coprecipitation with solid-state reactions to construct a BaAl<sub>2</sub>O<sub>4</sub>-overlayer-confined Ni catalyst. The 5- wt%-Ni@BaAl<sub>2</sub>O<sub>4</sub> catalyst exhibited advanced CO<sub>2</sub> and CH<sub>4</sub> conversions of 96% and 86% at 800 °C and a GHSV of 144 L g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>. Moreover, the <em>k</em><sub>d</sub>-CO<sub>2</sub> and <em>k</em><sub>d</sub>-CH<sub>4</sub> of Ni@BaAl<sub>2</sub>O<sub>4</sub> were 0.0063 and 0.0029 h<sup>−1</sup>; which are approximately half and one-thirds of those of Ni/BaAl<sub>2</sub>O<sub>4</sub> and slightly better than those of Ni@MgAl<sub>2</sub>O<sub>4</sub>, underscoring the versatility of the proposed synthesis protocol for constructing core–shell structures. XAS, HAADF–STEM–EDS, and CO transmission-IR characterizations confirmed the SMSI of ∼2-nm amorphous BaAl<sub>2</sub>O<sub>4</sub>-overlaid ∼10 nm Ni with an overall mesoporous structure. After a long-term test, the sintering and coking inhibition effects of Ni@BaAl<sub>2</sub>O<sub>4</sub> (10 → 11 nm, 0.55 mg<sub>C</sub> g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>) outperformed Ni/BaAl<sub>2</sub>O<sub>4</sub> (13 → 22 nm, 1.90 mg<sub>C</sub> g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>) and Ni@MgAl<sub>2</sub>O<sub>4</sub>. In situ time-resolved CH<sub>4</sub> → CO<sub>2</sub> transient response, DRIFTS experiments, and DFT calculations suggested that Ni@BaAl<sub>2</sub>O<sub>4</sub> and Ni/BaAl<sub>2</sub>O<sub>4</sub> followed the Mars–van Krevelen and Langmuir–Hinshelwood redox mechanisms, respectively. The functional interfacial lattice oxygen promoted the removal of C<sub>ads</sub>* on Ni and core–shell structure induced fast CO<sub>2</sub> adsorption and CO desorption. The present study provides a facile approach for constructing a stable and active Ni-based core − shell catalyst. Furthermore, it offers novel insights into the functionalities of non-reducible spinel overlayers in the DRM process.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"109 ","pages":"Pages 807-819"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering core–shell-structured BaAl2O4 overlaid Ni catalyst with strong metal-support interaction for durable and efficient CH4 dry reforming\",\"authors\":\"Qiangqiang Xue ,&nbsp;Kang Hui Lim ,&nbsp;Zhehao Sun ,&nbsp;Binhang Yan ,&nbsp;Zongyou Yin ,&nbsp;Ange Nzihou ,&nbsp;Yujun Wang ,&nbsp;Guangsheng Luo ,&nbsp;Feng-Shou Xiao ,&nbsp;Sibudjing Kawi\",\"doi\":\"10.1016/j.jechem.2025.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry reforming of methane (DRM) over Ni-based catalysts is an economically reasonable technology for large-scale CO<sub>2</sub> utilization. However, prolonged Ni sintering and carbon deposition reduce the durability and efficiency of DRM, hindering its engineering application. Herein, we propose a facile approach by combining continuous microscale coprecipitation with solid-state reactions to construct a BaAl<sub>2</sub>O<sub>4</sub>-overlayer-confined Ni catalyst. The 5- wt%-Ni@BaAl<sub>2</sub>O<sub>4</sub> catalyst exhibited advanced CO<sub>2</sub> and CH<sub>4</sub> conversions of 96% and 86% at 800 °C and a GHSV of 144 L g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>. Moreover, the <em>k</em><sub>d</sub>-CO<sub>2</sub> and <em>k</em><sub>d</sub>-CH<sub>4</sub> of Ni@BaAl<sub>2</sub>O<sub>4</sub> were 0.0063 and 0.0029 h<sup>−1</sup>; which are approximately half and one-thirds of those of Ni/BaAl<sub>2</sub>O<sub>4</sub> and slightly better than those of Ni@MgAl<sub>2</sub>O<sub>4</sub>, underscoring the versatility of the proposed synthesis protocol for constructing core–shell structures. XAS, HAADF–STEM–EDS, and CO transmission-IR characterizations confirmed the SMSI of ∼2-nm amorphous BaAl<sub>2</sub>O<sub>4</sub>-overlaid ∼10 nm Ni with an overall mesoporous structure. After a long-term test, the sintering and coking inhibition effects of Ni@BaAl<sub>2</sub>O<sub>4</sub> (10 → 11 nm, 0.55 mg<sub>C</sub> g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>) outperformed Ni/BaAl<sub>2</sub>O<sub>4</sub> (13 → 22 nm, 1.90 mg<sub>C</sub> g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup>) and Ni@MgAl<sub>2</sub>O<sub>4</sub>. In situ time-resolved CH<sub>4</sub> → CO<sub>2</sub> transient response, DRIFTS experiments, and DFT calculations suggested that Ni@BaAl<sub>2</sub>O<sub>4</sub> and Ni/BaAl<sub>2</sub>O<sub>4</sub> followed the Mars–van Krevelen and Langmuir–Hinshelwood redox mechanisms, respectively. The functional interfacial lattice oxygen promoted the removal of C<sub>ads</sub>* on Ni and core–shell structure induced fast CO<sub>2</sub> adsorption and CO desorption. The present study provides a facile approach for constructing a stable and active Ni-based core − shell catalyst. Furthermore, it offers novel insights into the functionalities of non-reducible spinel overlayers in the DRM process.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"109 \",\"pages\":\"Pages 807-819\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625004991\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004991","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在镍基催化剂上进行甲烷干重整是一种经济合理的大规模二氧化碳利用技术。然而,长时间的Ni烧结和积碳降低了DRM的耐久性和效率,阻碍了DRM的工程应用。在此,我们提出了一种简单的方法,将连续微尺度共沉淀法与固态反应相结合,构建baal2o4 -覆盖层限制Ni催化剂。5 wt%-Ni@BaAl2O4催化剂在800℃下CO2和CH4的转化率分别为96%和86%,GHSV为144 L gcat。−1 h−1。Ni@BaAl2O4的kd-CO2和kd-CH4分别为0.0063和0.0029 h−1;大约是Ni/BaAl2O4的一半和三分之一,略好于Ni@MgAl2O4,强调了所提出的合成方案在构建核壳结构方面的通用性。XAS, HAADF-STEM-EDS和CO透射- ir表征证实了具有整体介孔结构的~ 2 nm非晶baal2o4覆盖的~ 10 nm Ni的SMSI。经长期试验,Ni@BaAl2O4(10→11 nm, 0.55 mgC gcat)的烧结和结焦抑制效果较好。−1 h−1)优于Ni/BaAl2O4(13→22 nm, 1.90 mgcgcat)。−1 h−1)和Ni@MgAl2O4。原位时间分辨CH4→CO2瞬态响应、DRIFTS实验和DFT计算表明Ni@BaAl2O4和Ni/BaAl2O4分别遵循Mars-van Krevelen和Langmuir-Hinshelwood氧化还原机制。功能界面点阵氧促进了Ni上Cads*的去除,核壳结构诱导了CO2的快速吸附和CO的脱附。本研究为构建稳定、活性的镍基核壳催化剂提供了一种简便的方法。此外,它提供了新的见解,不可还原尖晶石覆盖层在DRM过程中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering core–shell-structured BaAl2O4 overlaid Ni catalyst with strong metal-support interaction for durable and efficient CH4 dry reforming

Engineering core–shell-structured BaAl2O4 overlaid Ni catalyst with strong metal-support interaction for durable and efficient CH4 dry reforming
Dry reforming of methane (DRM) over Ni-based catalysts is an economically reasonable technology for large-scale CO2 utilization. However, prolonged Ni sintering and carbon deposition reduce the durability and efficiency of DRM, hindering its engineering application. Herein, we propose a facile approach by combining continuous microscale coprecipitation with solid-state reactions to construct a BaAl2O4-overlayer-confined Ni catalyst. The 5- wt%-Ni@BaAl2O4 catalyst exhibited advanced CO2 and CH4 conversions of 96% and 86% at 800 °C and a GHSV of 144 L gcat.−1 h−1. Moreover, the kd-CO2 and kd-CH4 of Ni@BaAl2O4 were 0.0063 and 0.0029 h−1; which are approximately half and one-thirds of those of Ni/BaAl2O4 and slightly better than those of Ni@MgAl2O4, underscoring the versatility of the proposed synthesis protocol for constructing core–shell structures. XAS, HAADF–STEM–EDS, and CO transmission-IR characterizations confirmed the SMSI of ∼2-nm amorphous BaAl2O4-overlaid ∼10 nm Ni with an overall mesoporous structure. After a long-term test, the sintering and coking inhibition effects of Ni@BaAl2O4 (10 → 11 nm, 0.55 mgC gcat.−1 h−1) outperformed Ni/BaAl2O4 (13 → 22 nm, 1.90 mgC gcat.−1 h−1) and Ni@MgAl2O4. In situ time-resolved CH4 → CO2 transient response, DRIFTS experiments, and DFT calculations suggested that Ni@BaAl2O4 and Ni/BaAl2O4 followed the Mars–van Krevelen and Langmuir–Hinshelwood redox mechanisms, respectively. The functional interfacial lattice oxygen promoted the removal of Cads* on Ni and core–shell structure induced fast CO2 adsorption and CO desorption. The present study provides a facile approach for constructing a stable and active Ni-based core − shell catalyst. Furthermore, it offers novel insights into the functionalities of non-reducible spinel overlayers in the DRM process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信