以锰矿尾矿为原料制备Fe3O4/ n掺杂碳和MnO/ n掺杂碳复合材料,作为钠离子电池的高性能负极材料

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Wenhan Xu , Yanwei Li , Zhenghong Zhu , Yiqian Li , Bin Huang , Jianwen Yang , Shunhua Xiao , Jinhuan Yao
{"title":"以锰矿尾矿为原料制备Fe3O4/ n掺杂碳和MnO/ n掺杂碳复合材料,作为钠离子电池的高性能负极材料","authors":"Wenhan Xu ,&nbsp;Yanwei Li ,&nbsp;Zhenghong Zhu ,&nbsp;Yiqian Li ,&nbsp;Bin Huang ,&nbsp;Jianwen Yang ,&nbsp;Shunhua Xiao ,&nbsp;Jinhuan Yao","doi":"10.1016/j.est.2025.117597","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and rational use of manganese ore tailings is valuable to environmental protection and economic development. Herein, the Fe<sub>3</sub>O<sub>4</sub>/nitrogen-doped carbon (Fe<sub>3</sub>O<sub>4</sub>/C) and MnO/nitrogen-doped carbon (MnO/C) composites are synthesized by a two-step precipitation process with manganese ore tailings as the Fe and Mn resources. The sodium storage properties of the two composites as anodes were investigated in depth. The Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C exhibit outstanding cyclic performance of 251.6 and 412.5 mAh g<sup>−1</sup> after 1000 and 500 cycles at 0.5 A g<sup>−1</sup>, respectively. Even at 5.0 A g<sup>−1</sup>, the Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C still deliver specific capacities of 147.2 and 320.5 mAh g<sup>−1</sup>, respectively. Compared with pure Fe<sub>3</sub>O<sub>4</sub> and MnO, the improved sodium storage performance of Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C composites can be attributed to the introduction of the N-doped carbon matrix. This carbon matrix not only mitigates the agglomeration of metal oxide nanoparticles but also enhances the electrical conductivity of the composites. Moreover, it promotes the reactivation of Fe₃O₄/C and MnO/C electrodes during repeated cycling. This work gives guidance for the high-value utilization of manganese ore tailings and the fabrication of high-performance metal oxide anodes for sodium-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"131 ","pages":"Article 117597"},"PeriodicalIF":8.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4/N-doped carbon and MnO/N-doped carbon composites prepared from manganese ore tailings as high-performance anode materials for sodium-ion batteries\",\"authors\":\"Wenhan Xu ,&nbsp;Yanwei Li ,&nbsp;Zhenghong Zhu ,&nbsp;Yiqian Li ,&nbsp;Bin Huang ,&nbsp;Jianwen Yang ,&nbsp;Shunhua Xiao ,&nbsp;Jinhuan Yao\",\"doi\":\"10.1016/j.est.2025.117597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient and rational use of manganese ore tailings is valuable to environmental protection and economic development. Herein, the Fe<sub>3</sub>O<sub>4</sub>/nitrogen-doped carbon (Fe<sub>3</sub>O<sub>4</sub>/C) and MnO/nitrogen-doped carbon (MnO/C) composites are synthesized by a two-step precipitation process with manganese ore tailings as the Fe and Mn resources. The sodium storage properties of the two composites as anodes were investigated in depth. The Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C exhibit outstanding cyclic performance of 251.6 and 412.5 mAh g<sup>−1</sup> after 1000 and 500 cycles at 0.5 A g<sup>−1</sup>, respectively. Even at 5.0 A g<sup>−1</sup>, the Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C still deliver specific capacities of 147.2 and 320.5 mAh g<sup>−1</sup>, respectively. Compared with pure Fe<sub>3</sub>O<sub>4</sub> and MnO, the improved sodium storage performance of Fe<sub>3</sub>O<sub>4</sub>/C and MnO/C composites can be attributed to the introduction of the N-doped carbon matrix. This carbon matrix not only mitigates the agglomeration of metal oxide nanoparticles but also enhances the electrical conductivity of the composites. Moreover, it promotes the reactivation of Fe₃O₄/C and MnO/C electrodes during repeated cycling. This work gives guidance for the high-value utilization of manganese ore tailings and the fabrication of high-performance metal oxide anodes for sodium-ion batteries.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"131 \",\"pages\":\"Article 117597\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25023102\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25023102","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高效合理利用锰矿尾矿对环境保护和经济发展具有重要意义。本文以锰矿尾矿为铁、锰资源,采用两步沉淀法合成了Fe3O4/氮掺杂碳(Fe3O4/C)和MnO/氮掺杂碳(MnO/C)复合材料。对两种复合材料作为阳极的储钠性能进行了深入研究。Fe3O4/C和MnO/C在0.5 A g−1下循环1000次和500次后分别表现出251.6和412.5 mAh g−1的优异循环性能。即使在5.0 A g−1时,Fe3O4/C和MnO/C仍然分别提供147.2和320.5 mAh g−1的比容量。与纯Fe3O4和MnO相比,Fe3O4/C和MnO/C复合材料的储钠性能得到了改善,这可归因于n掺杂碳基体的引入。这种碳基不仅减轻了金属氧化物纳米颗粒的团聚,而且提高了复合材料的导电性。此外,它还促进了Fe₃O₄/C和MnO/C电极在重复循环过程中的再活化。该工作对锰矿尾矿的高价值利用和钠离子电池用高性能金属氧化物阳极的制备具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe3O4/N-doped carbon and MnO/N-doped carbon composites prepared from manganese ore tailings as high-performance anode materials for sodium-ion batteries

Fe3O4/N-doped carbon and MnO/N-doped carbon composites prepared from manganese ore tailings as high-performance anode materials for sodium-ion batteries
Efficient and rational use of manganese ore tailings is valuable to environmental protection and economic development. Herein, the Fe3O4/nitrogen-doped carbon (Fe3O4/C) and MnO/nitrogen-doped carbon (MnO/C) composites are synthesized by a two-step precipitation process with manganese ore tailings as the Fe and Mn resources. The sodium storage properties of the two composites as anodes were investigated in depth. The Fe3O4/C and MnO/C exhibit outstanding cyclic performance of 251.6 and 412.5 mAh g−1 after 1000 and 500 cycles at 0.5 A g−1, respectively. Even at 5.0 A g−1, the Fe3O4/C and MnO/C still deliver specific capacities of 147.2 and 320.5 mAh g−1, respectively. Compared with pure Fe3O4 and MnO, the improved sodium storage performance of Fe3O4/C and MnO/C composites can be attributed to the introduction of the N-doped carbon matrix. This carbon matrix not only mitigates the agglomeration of metal oxide nanoparticles but also enhances the electrical conductivity of the composites. Moreover, it promotes the reactivation of Fe₃O₄/C and MnO/C electrodes during repeated cycling. This work gives guidance for the high-value utilization of manganese ore tailings and the fabrication of high-performance metal oxide anodes for sodium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信