{"title":"多目标混合绿蟒蛇技能优化实现了容延迟物联网网络中基于能量和缓存的QoS感知路由","authors":"Ashapu Bhavani , Attada Venkataramana , A.S.N. Chakravarthy","doi":"10.1016/j.suscom.2025.101158","DOIUrl":null,"url":null,"abstract":"<div><div>Delay-Tolerant Network (DTN) is developed to overcome the challenges of environments where classical networking models fail due to unstable connectivity and high latency. The DTN offers stable connections between nodes and operates effectively in scenarios where nodes frequently experience disruptions or only sporadic communication opportunities. However, the classical techniques allowed limited data communication and did not apply to the network with reduced resources and which had low delivery rates and high delays. Therefore, this research aims to develop a Green Anaconda Skill Optimization (GASO) for an eQoS-aware routing solution for a DTN-IoT network. Initially, the DTN-IoT network is simulated by considering energy and mobility models. Then, for predicting the energy, Recurrent Radial Basis Function Networks (RRBFN) is used. After that, Cluster Head (CH) selection is executed by GASO, considering multiple objectives, like cache ratio, residual energy, predicted energy, throughput, distance, trust factors, and delay. Finally, GASO is employed for routing, and the above-mentioned multi-objectives are considered. Here, the GASO is established through the fusion of Green Anaconda Optimization (GAO) and Skill Optimization Algorithm (SOA). The evaluation results highlight that the GASO accomplished a reduced distance of 0.253 m, low energy consumption of 0.783 J, and minimal delay of 0.270 sec, with an increased throughput of 0.313 Mbps.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101158"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective hybrid green anaconda skill optimization enabled energy and cache based QoS aware routing in delay tolerant–IoT network\",\"authors\":\"Ashapu Bhavani , Attada Venkataramana , A.S.N. Chakravarthy\",\"doi\":\"10.1016/j.suscom.2025.101158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Delay-Tolerant Network (DTN) is developed to overcome the challenges of environments where classical networking models fail due to unstable connectivity and high latency. The DTN offers stable connections between nodes and operates effectively in scenarios where nodes frequently experience disruptions or only sporadic communication opportunities. However, the classical techniques allowed limited data communication and did not apply to the network with reduced resources and which had low delivery rates and high delays. Therefore, this research aims to develop a Green Anaconda Skill Optimization (GASO) for an eQoS-aware routing solution for a DTN-IoT network. Initially, the DTN-IoT network is simulated by considering energy and mobility models. Then, for predicting the energy, Recurrent Radial Basis Function Networks (RRBFN) is used. After that, Cluster Head (CH) selection is executed by GASO, considering multiple objectives, like cache ratio, residual energy, predicted energy, throughput, distance, trust factors, and delay. Finally, GASO is employed for routing, and the above-mentioned multi-objectives are considered. Here, the GASO is established through the fusion of Green Anaconda Optimization (GAO) and Skill Optimization Algorithm (SOA). The evaluation results highlight that the GASO accomplished a reduced distance of 0.253 m, low energy consumption of 0.783 J, and minimal delay of 0.270 sec, with an increased throughput of 0.313 Mbps.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"47 \",\"pages\":\"Article 101158\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000794\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000794","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Multi-objective hybrid green anaconda skill optimization enabled energy and cache based QoS aware routing in delay tolerant–IoT network
Delay-Tolerant Network (DTN) is developed to overcome the challenges of environments where classical networking models fail due to unstable connectivity and high latency. The DTN offers stable connections between nodes and operates effectively in scenarios where nodes frequently experience disruptions or only sporadic communication opportunities. However, the classical techniques allowed limited data communication and did not apply to the network with reduced resources and which had low delivery rates and high delays. Therefore, this research aims to develop a Green Anaconda Skill Optimization (GASO) for an eQoS-aware routing solution for a DTN-IoT network. Initially, the DTN-IoT network is simulated by considering energy and mobility models. Then, for predicting the energy, Recurrent Radial Basis Function Networks (RRBFN) is used. After that, Cluster Head (CH) selection is executed by GASO, considering multiple objectives, like cache ratio, residual energy, predicted energy, throughput, distance, trust factors, and delay. Finally, GASO is employed for routing, and the above-mentioned multi-objectives are considered. Here, the GASO is established through the fusion of Green Anaconda Optimization (GAO) and Skill Optimization Algorithm (SOA). The evaluation results highlight that the GASO accomplished a reduced distance of 0.253 m, low energy consumption of 0.783 J, and minimal delay of 0.270 sec, with an increased throughput of 0.313 Mbps.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.