密有向图中哈密顿循环的推广

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jie Zhang , Zhilan Wang , Jin Yan
{"title":"密有向图中哈密顿循环的推广","authors":"Jie Zhang ,&nbsp;Zhilan Wang ,&nbsp;Jin Yan","doi":"10.1016/j.dam.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be a digraph and <span><math><mi>C</mi></math></span> be a cycle in <span><math><mi>D</mi></math></span>. For any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>D</mi></math></span>, the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> is defined as the minimum length of a directed path from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span>. The square of the cycle <span><math><mi>C</mi></math></span> is the graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, where for distinct vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span>, there is an arc from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> if and only if the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span> is at most 2. The reverse square of the cycle <span><math><mi>C</mi></math></span> is the digraph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, and arc set <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>y</mi><mi>x</mi><mo>:</mo><mtext>the vertices</mtext><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mspace></mspace><mtext>and the distance from </mtext><mi>x</mi><mtext> to </mtext><mi>y</mi><mtext> in </mtext><mi>C</mi><mtext> is </mtext><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. In this paper, we prove that for every real number <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, there exists a positive integer <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> such that every digraph on <span><math><mrow><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> vertices with the minimum in- and out-degree at least <span><math><mrow><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>γ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 1-9"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Hamiltonian cycle in dense digraphs\",\"authors\":\"Jie Zhang ,&nbsp;Zhilan Wang ,&nbsp;Jin Yan\",\"doi\":\"10.1016/j.dam.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi></math></span> be a digraph and <span><math><mi>C</mi></math></span> be a cycle in <span><math><mi>D</mi></math></span>. For any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>D</mi></math></span>, the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> is defined as the minimum length of a directed path from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span>. The square of the cycle <span><math><mi>C</mi></math></span> is the graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, where for distinct vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span>, there is an arc from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> if and only if the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span> is at most 2. The reverse square of the cycle <span><math><mi>C</mi></math></span> is the digraph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, and arc set <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>y</mi><mi>x</mi><mo>:</mo><mtext>the vertices</mtext><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mspace></mspace><mtext>and the distance from </mtext><mi>x</mi><mtext> to </mtext><mi>y</mi><mtext> in </mtext><mi>C</mi><mtext> is </mtext><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. In this paper, we prove that for every real number <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, there exists a positive integer <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> such that every digraph on <span><math><mrow><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> vertices with the minimum in- and out-degree at least <span><math><mrow><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>γ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003415\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

让D是一个有向图和C D的周期为任意两个顶点在D x和y, x到y的距离被定义为一个有向路径的最小长度从x到y。C的平方周期图的顶点集V (C),在不同的顶点x和y在C语言中,有一个弧从x到y当且仅当x到y的距离在C最多是2。循环C的逆平方是顶点集V(C)和弧集A(C)的有向图∪{x:顶点x,y∈V(C), C中x到y的距离为2}。证明了对于每一个实数γ>;0,存在一个正整数n0=n0(γ),使得在n≥n0个顶点上的每一个有向图,其最小进出度至少为(2/3+γ)n,包含一个哈密顿循环的逆平方。这个结果推广了Czygrinow, Kierstead和Molla的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the Hamiltonian cycle in dense digraphs
Let D be a digraph and C be a cycle in D. For any two vertices x and y in D, the distance from x to y is defined as the minimum length of a directed path from x to y. The square of the cycle C is the graph with vertex set V(C), where for distinct vertices x and y in C, there is an arc from x to y if and only if the distance from x to y in C is at most 2. The reverse square of the cycle C is the digraph with vertex set V(C), and arc set A(C){yx:the verticesx,yV(C)and the distance from x to y in C is 2}. In this paper, we prove that for every real number γ>0, there exists a positive integer n0=n0(γ) such that every digraph on nn0 vertices with the minimum in- and out-degree at least (2/3+γ)n contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信