{"title":"密有向图中哈密顿循环的推广","authors":"Jie Zhang , Zhilan Wang , Jin Yan","doi":"10.1016/j.dam.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be a digraph and <span><math><mi>C</mi></math></span> be a cycle in <span><math><mi>D</mi></math></span>. For any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>D</mi></math></span>, the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> is defined as the minimum length of a directed path from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span>. The square of the cycle <span><math><mi>C</mi></math></span> is the graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, where for distinct vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span>, there is an arc from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> if and only if the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span> is at most 2. The reverse square of the cycle <span><math><mi>C</mi></math></span> is the digraph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, and arc set <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>y</mi><mi>x</mi><mo>:</mo><mtext>the vertices</mtext><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mspace></mspace><mtext>and the distance from </mtext><mi>x</mi><mtext> to </mtext><mi>y</mi><mtext> in </mtext><mi>C</mi><mtext> is </mtext><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. In this paper, we prove that for every real number <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists a positive integer <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> such that every digraph on <span><math><mrow><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> vertices with the minimum in- and out-degree at least <span><math><mrow><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>γ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 1-9"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Hamiltonian cycle in dense digraphs\",\"authors\":\"Jie Zhang , Zhilan Wang , Jin Yan\",\"doi\":\"10.1016/j.dam.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi></math></span> be a digraph and <span><math><mi>C</mi></math></span> be a cycle in <span><math><mi>D</mi></math></span>. For any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>D</mi></math></span>, the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> is defined as the minimum length of a directed path from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span>. The square of the cycle <span><math><mi>C</mi></math></span> is the graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, where for distinct vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span>, there is an arc from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> if and only if the distance from <span><math><mi>x</mi></math></span> to <span><math><mi>y</mi></math></span> in <span><math><mi>C</mi></math></span> is at most 2. The reverse square of the cycle <span><math><mi>C</mi></math></span> is the digraph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, and arc set <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>y</mi><mi>x</mi><mo>:</mo><mtext>the vertices</mtext><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mspace></mspace><mtext>and the distance from </mtext><mi>x</mi><mtext> to </mtext><mi>y</mi><mtext> in </mtext><mi>C</mi><mtext> is </mtext><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. In this paper, we prove that for every real number <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists a positive integer <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> such that every digraph on <span><math><mrow><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> vertices with the minimum in- and out-degree at least <span><math><mrow><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>γ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003415\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A generalization of the Hamiltonian cycle in dense digraphs
Let be a digraph and be a cycle in . For any two vertices and in , the distance from to is defined as the minimum length of a directed path from to . The square of the cycle is the graph with vertex set , where for distinct vertices and in , there is an arc from to if and only if the distance from to in is at most 2. The reverse square of the cycle is the digraph with vertex set , and arc set . In this paper, we prove that for every real number , there exists a positive integer such that every digraph on vertices with the minimum in- and out-degree at least contains the reverse square of a Hamiltonian cycle. This result generalizes a theorem of Czygrinow, Kierstead and Molla.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.